• Laser & Optoelectronics Progress
  • Vol. 61, Issue 9, 0900011 (2024)
Suyu Wang, Zichang Liu, Chengxi Luo, Dongchen Zhang, Weiquan Su, and Lüyun Yang*
Author Affiliations
  • Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
  • show less
    DOI: 10.3788/LOP223259 Cite this Article Set citation alerts
    Suyu Wang, Zichang Liu, Chengxi Luo, Dongchen Zhang, Weiquan Su, Lüyun Yang. Research Progress of Phosphosilicate Glass and Optical Fiber[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0900011 Copy Citation Text show less
    References

    [1] Liu Z J, Yang L Y, Dai N L et al. Tri-color luminescence glass under long-wavelength ultraviolet excitation[J]. Acta Physica Sinica, 60, 047806(2011).

    [2] Zhou Z H, Liu W, Yan H Z et al. Nonlinear thermal emission and visible thermometry[J]. Advanced Photonics, 4, 045001(2022).

    [3] Zou J H, Hong J F, Zhao Z et al. 3.6 W compact all-fiber Pr3+-doped green laser at 521 nm[J]. Advanced Photonics, 4, 056001(2022).

    [4] Xu M J, Du N J. Phosphate glass development at home and abroad[J]. The World of Building Materials, 30, 53-57(2009).

    [5] Fang J C, Hu J B, Zhong Y N et al. 3D waveguide device for few-mode multi-core fiber optical communications[J]. Photonics Research, 10, 2677-2685(2022).

    [6] Tian J D, Wang Z H, Xiao Q R et al. On the initiation of fiber fuse damage in high-power ytterbium-doped fiber lasers[J]. Photonics Research, 10, 2513-2525(2022).

    [7] Yu L P, Liang J H, Huang S T et al. Generation of single solitons tunable from 3 to 3.8  μm in cascaded Er3+-doped and Dy3+-doped fluoride fiber amplifiers[J]. Photonics Research, 10, 2140-2146(2022).

    [8] Ye J, Ma X Y, Zhang Y et al. Revealing the dynamics of intensity fluctuation transfer in a random Raman fiber laser[J]. Photonics Research, 10, 618-627(2022).

    [9] Gan F X. Structure, properties and applications of chalcohalide glasses: a review[J]. Journal of Non-Crystalline Solids, 140, 184-193(1992).

    [10] Wang F, Slivken S, Razeghi M. Harmonic injection locking of high-power mid-infrared quantum cascade lasers[J]. Photonics Research, 9, 1078-1083(2021).

    [11] MacChesney J B, O'Connor P B, Presby H M. A new technique for the preparation of low-loss and graded-index optical fibers[J]. Proceedings of the IEEE, 62, 1280-1281(1974).

    [12] Carter A L G, Poole S B, Sceats M G. Flash-condensation technique for the fabrication of high-phosphorus-content rare-earth-doped fibres[J]. Electronics Letters, 28, 2009-2011(1992).

    [13] Vienne G. Fabrication and characterisation of ytterbium: erbium codoped phosphosilicate fibres for optical amplifiers and lasers[EB/OL]. https://www.semanticscholar.org/paper/Fabrication-and-characterisation-of-codoped-fibres-Vienne/22f91b3884fe13ac779daffa43a02b006fc80453

    [14] Krichhof J, Unger S, Grau L et al. A new MCVD technique for increased efficiency of dopant incorporation in optical fibre fabrication[J]. Crystal Research and Technology, 25, K29-K34(1990).

    [15] Pal M, Sen R, Paul M C et al. Investigation of the deposition of porous layers by the MCVD method for the preparation of rare-earth doped cores of optical fibres[J]. Optics Communications, 254, 88-95(2005).

    [16] Abramov A N, Bubnov M M, Vechkanov N N et al. Fabrication of heavily Er2O3 doped aluminophosphosilicate glass fibers[J]. Inorganic Materials, 46, 439-444(2010).

    [17] Kirchhof J, Unger S, Schwuchow A et al. Spatial distribution effects and laser efficiency in Er/Yb-doped fibers[J]. Proceedings of SPIE, 5350, 222-233(2004).

    [18] Lipatov D S, Guryanov A N, Yashkov M V et al. Fabrication of Yb2O3-Al2O3-P2O5-SiO2 optical fibers with a perfect step-index profile by the MCVD process[J]. Inorganic Materials, 54, 276-282(2018).

    [19] Zhang Z X, Jiang Z W, Peng J G et al. Fabrication and characterization of Er3+: Yb3+ Co-doped phosphosilicate fibers[J]. Journal of Inorganic Materials, 27, 485-488(2012).

    [20] Liu Y. Preparation of doped silicate laser glass by sol gel method and its performance analysis[D](2020).

    [21] Liu Z J. Study on luminescence characteristics of rare earth doped silicate glass[D](2014).

    [22] Liu Y G, Wang S Y, Zhang D C et al. Broadband luminescence at 1.5 μm of Er P co-doped high silica glass by nanoporous doping technology[J]. Journal of Non-Crystalline Solids, 575, 121206(2022).

    [23] Digiovanni D J, MacChesney J B, Kometani T Y. Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join[J]. Journal of Non-Crystalline Solids, 113, 58-64(1989).

    [24] Likhachev M E, Bubnov M M, Zotov K V et al. Effect of the AlPO4 join on the pump-to-signal conversion efficiency in heavily Er-doped fibers[J]. Optics Letters, 34, 3355-3357(2009).

    [25] Shao C Y, Wang F, Jiao Y et al. Relationship between glass structure and spectroscopic properties in Er3+/Yb3+/Al3+/P5+-doped silica glasses[J]. Optical Materials Express, 10, 1169-1181(2020).

    [26] Vienne G G, Brocklesby W S, Brown R S et al. Role of aluminum in ytterbium-erbium codoped phosphoaluminosilicate optical fibers[J]. Optical Fiber Technology, 2, 387-393(1996).

    [27] Wang S Y, Liu Y G, Zhang D C et al. Tailoring of communication band luminescence for super broadband optical amplifier based on Er3+/Yb3+/P5+ co-doped nanoporous silica glass[J]. Ceramics International, 47, 18913-18919(2021).

    [28] Liu Y G, Wang S Y, Zhang D C et al. Broadband luminescence at 1.5 μm of Er P co-doped high silica glass by nanoporous doping technology[J]. Journal of Non-Crystalline Solids, 575, 121206(2022).

    [29] Wang S, Lou F, Yu C et al. Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass[J]. Journal of Materials Chemistry C, 2, 4406-4414(2014).

    [30] Xu W B, Ren J J, Shao C Y et al. Effect of P5+ on spectroscopy and structure of Yb3+/Al3+/P5+ co-doped silica glass[J]. Journal of Luminescence, 167, 8-15(2015).

    [31] Cao J K, Xue Y F, Peng J et al. Enhanced NIR photoemission from Bi-doped aluminoborate glasses via topological tailoring of glass structure[J]. Journal of the American Ceramic Society, 102, 1710-1719(2018).

    [32] Zhang D C, Wang S Y, Liu Y G et al. Regulation of bismuth valence in nano-porous silica glass for near infrared ultra-wideband optical amplification[J]. Ceramics International, 47, 32619-32625(2021).

    [33] Unger S, Schwuchow A, Jetschke S et al. Optical properties of Yb-doped laser fibers in dependence on codopants and preparation conditions[J]. Proceedings of SPIE, 6890, 689016(2008).

    [34] Unger S, Schwuchow A, Jetschke S et al. Influence of aluminum-phosphorus codoping on optical properties of ytterbium-doped laser fibers[J]. Proceedings of SPIE, 7212, 72121B(2009).

    [35] Lee Y W, Sinha S, Digonnet M et al. Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres[J]. Electronics Letters, 44, 14-16(2008).

    [36] Shubin A V, Yashkov M V, Melkumov M A et al. Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers[C](2007).

    [37] Lee Y W, Sinha S, Digonnet M J F et al. Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres[J]. Electronics Letters, 44, 14-16(2008).

    [38] Engholm M, Tuggle M, Kucera C et al. On the origin of photodarkening resistance in Yb-doped silica fibers with high aluminum concentration[J]. Optical Materials Express, 11, 115-126(2021).

    [39] Bobkov K K, Mikhailov E K, Zaushitsyna T S et al. Properties of silica based optical fibers doped with an ultra-high ytterbium concentration[J]. Journal of Lightwave Technology, 40, 6230-6239(2022).

    [40] Shao C Y, Ren J J, Wang F et al. Origin of radiation-induced darkening in Yb3+/Al3+/P5+-doped silica glasses: effect of the P/Al ratio[J]. The Journal of Physical Chemistry B, 122, 2809-2820(2018).

    [41] Yoo S, Basu C, Boyland A J et al. Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation[J]. Optics Letters, 32, 1626-1628(2007).

    [42] Tekgül E K, Midilli Y, Çamiçi H C et al. Effects of gamma radiation on Yb-doped Al-P-silicate optical fibers[J]. Applied Physics B, 128, 170(2022).

    [43] Zhou Q L, Xu L, Liu L Y et al. Study on the laser-induced darkening in Nd-doped laser glasses[J]. Optical Materials, 25, 313-319(2004).

    [44] Lee Y W, Sinha S, Digonnet M F et al. 20 W single-mode Yb3+-doped phosphate fiber laser[J]. Optics Letters, 31, 3255-3257(2006).

    [45] Jetschke S, Unger S, Schwuchow A et al. Efficient Yb laser fibers with low photodarkening by optimization of the core composition[J]. Optics Express, 16, 15540-15545(2008).

    [46] Deschamps T, Ollier N, Vezin H et al. Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening[J]. The Journal of Chemical Physics, 136, 014503(2012).

    [47] Liu R. Design, Fabrication and performance of ytterbium doped fiber for high power fiber lasers[D](2020).

    [48] Liu B. Study on photon darkening effect of Yb-doped fiber[D](2020).

    [49] Kakui M, Kashiwada T, Nishimura M. Optical amplification characteristics around 1.58 µm of silica-based erbium-doped fibers containing phosphorous/alumina as Codopants[C], AB2(2006).

    [50] Ellison A J G, Goforth D E, Samson B N et al. Extending the L-band to 1620 nm using MCS fiber[C], TuA2(2003).

    [51] Chen Y, Lou Y, Gu Z M et al. Extending the L-band amplification to 1623 nm using Er/Yb/P co-doped phosphosilicate fiber[J]. Optics Letters, 46, 5834-5837(2021).

    Suyu Wang, Zichang Liu, Chengxi Luo, Dongchen Zhang, Weiquan Su, Lüyun Yang. Research Progress of Phosphosilicate Glass and Optical Fiber[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0900011
    Download Citation