• Acta Optica Sinica
  • Vol. 44, Issue 10, 1026007 (2024)
Yahong Chen1、*, Zhen Dong1, Yonglei Liu1, Lin Liu1, Fei Wang1, and Yangjian Cai2、**
Author Affiliations
  • 1School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu , China
  • 2School of Physics and Electronics, Shandong Normal University, Jinan 250358, Shandong , China
  • show less
    DOI: 10.3788/AOS232001 Cite this Article Set citation alerts
    Yahong Chen, Zhen Dong, Yonglei Liu, Lin Liu, Fei Wang, Yangjian Cai. Research Progress in Partially Coherent Vector Fields: From Two-Dimensional Beams to Three-Dimensional Fields (Invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026007 Copy Citation Text show less
    References

    [1] Goodman J W[M]. Statistical optics(2015).

    [2] Korotkova O[M]. Theoretical statistical optics(2021).

    [3] Zernike F. The concept of degree of coherence and its application to optical problems[J]. Physica, 5, 785-795(1938).

    [4] Cai Y J, Chen Y H, Yu J Y et al. Generation of partially coherent beams[J]. Progress in Optics, 62, 157-223(2017).

    [5] Redding B, Choma M A, Cao H. Speckle-free laser imaging using random laser illumination[J]. Nature Photonics, 6, 355-359(2012).

    [6] Peng Y F, Choi S, Kim J et al. Speckle-free holography with partially coherent light sources and camera-in-the-loop calibration[J]. Science Advances, 7, eabg5040(2021).

    [7] Barré N, Jesacher A. Holographic beam shaping of partially coherent light[J]. Optics Letters, 47, 425-428(2022).

    [8] Gbur G. Partially coherent beam propagation in atmospheric turbulence[J]. Journal of the Optical Society of America A, 31, 2038-2045(2014).

    [9] Wang F, Liu X L, Cai Y J. Propagation of partially coherent beam in turbulent atmosphere: a review (invited review)[J]. Progress In Electromagnetics Research, 150, 123-143(2015).

    [10] Cai Y J, Zhu S Y. Ghost imaging with incoherent and partially coherent light radiation[J]. Physical Review E, 71, 056607(2005).

    [11] Torres-Company V, Lajunen H, Lancis J et al. Ghost interference with classical partially coherent light pulses[J]. Physical Review A, 77, 043811(2008).

    [12] Shapiro J H, Boyd R W. The physics of ghost imaging[J]. Quantum Information Processing, 11, 949-993(2012).

    [13] Moreau P A, Toninelli E, Gregory T et al. Ghost imaging using optical correlations[J]. Laser & Photonics Reviews, 12, 1700143(2018).

    [14] Kato Y, Mima K, Miyanaga N et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Physical Review Letters, 53, 1057-1060(1984).

    [15] Wolf E. Optics in terms of observable quantities[J]. Il Nuovo Cimento (1943—1954), 12, 884-888(1954).

    [16] Thompson B J, Wolf E. Two-beam interference with partially coherent light[J]. Journal of the Optical Society of America A, 47, 895-902(1957).

    [17] Wolf E. Coherence properties of partially polarized electromagnetic radiation[J]. Il Nuovo Cimento (1955—1965), 13, 1165-1181(1959).

    [18] Mandel L, Wolf E. Coherence properties of optical fields[J]. Reviews of Modern Physics, 37, 231-287(1965).

    [19] Wolf E, James D F V. Correlation-induced spectral changes[J]. Reports on Progress in Physics, 59, 771-818(1996).

    [20] Gbur G, Visser T D. The structure of partially coherent fields[J]. Progress in Optics, 55, 285-341(2010).

    [21] Korotkova O, Gbur G. Applications of optical coherence theory[J]. Progress in Optics, 65, 43-104(2020).

    [22] Mandel L, Wolf E[M]. Optical coherence and quantum optics(1995).

    [23] Rubinsztein-Dunlop H, Forbes A, Berry M V et al. Roadmap on structured light[J]. Journal of Optics, 19, 013001(2017).

    [24] Forbes A, de Oliveira M, Dennis M R. Structured light[J]. Nature Photonics, 15, 253-262(2021).

    [25] He C, Shen Y J, Forbes A. Towards higher-dimensional structured light[J]. Light, Science & Applications, 11, 205(2022).

    [26] Cai Y J, Chen Y H, Wang F. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review[J]. Journal of the Optical Society of America A, 31, 2083-2096(2014).

    [27] Yu J Y, Zhu X L, Wang F et al. Research progress on manipulating spatial coherence structure of light beam and its applications[J]. Progress in Quantum Electronics, 91, 100486(2023).

    [28] Wang F, Liu X L, Yuan Y S et al. Experimental generation of partially coherent beams with different complex degrees of coherence[J]. Optics Letters, 38, 1814-1816(2013).

    [29] Chen Y H, Cai Y J. Generation of a controllable optical cage by focusing a Laguerre-Gaussian correlated Schell-model beam[J]. Optics Letters, 39, 2549-2552(2014).

    [30] Chen Y H, Gu J X, Wang F et al. Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam[J]. Physical Review A, 91, 013823(2015).

    [31] Chen Y H, Cai Y J. Correlation-induced self-focusing and self-shaping effect of a partially coherent beam[J]. High Power Laser Science and Engineering, 4, e20(2016).

    [32] Wang F, Chen Y H, Liu X L et al. Self-reconstruction of partially coherent light beams scattered by opaque obstacles[J]. Optics Express, 24, 23735-23746(2016).

    [33] Chen Y H, Ponomarenko S A, Cai Y J. Self-steering partially coherent beams[J]. Scientific Reports, 7, 39957(2017).

    [34] Liu Y L, Chen Y H, Wang F et al. Robust far-field imaging by spatial coherence engineering[J]. Opto-Electronic Advances, 4, 210027(2021).

    [35] Shen Y C, Sun H, Peng D M et al. Optical image reconstruction in 4f imaging system: role of spatial coherence structure engineering[J]. Applied Physics Letters, 118, 181102(2021).

    [36] Jin Y, Wang H Y, Liu L et al. Orientation-selective sub-Rayleigh imaging with spatial coherence lattices[J]. Optics Express, 30, 9548-9561(2022).

    [37] Lin R, Chen M Y, Liu Y L et al. Measuring refractive indices of a uniaxial crystal by structured light with non-uniform correlation[J]. Optics Letters, 46, 2268-2271(2021).

    [38] Zhao X C, Wang Z Y, Lu X Y et al. Ultrahigh precision angular velocity measurement using frequency shift of partially coherent beams[J]. Laser & Photonics Reviews, 17, 2300318(2023).

    [39] Peng D M, Huang Z F, Liu Y L et al. Optical coherence encryption with structured random light[J]. PhotoniX, 2, 6(2021).

    [40] Peng D M, Zhang X, Liu Y L et al. Imaging through random scatterer with spatial coherence structure measurement[J]. Frontiers in Physics, 9, 816(2022).

    [41] Yu J Y, Zhu X L, Wang F et al. Experimental study of reducing beam wander by modulating the coherence structure of structured light beams[J]. Optics Letters, 44, 4371-4374(2019).

    [42] Liu Y L, Zhang X, Dong Z et al. Robust far-field optical image transmission with structured random light beams[J]. Physical Review Applied, 17, 024043(2022).

    [43] Yang B, Chen Y H, Wang F et al. Trapping two types of Rayleigh particles simultaneously by a focused rotational elliptical Laguerre-Gaussian correlated Schell-model beam[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 262, 107518(2021).

    [44] Yu J Y, Xu Y, Lin S Q et al. Longitudinal optical trapping and manipulating Rayleigh particles by spatial nonuniform coherence engineering[J]. Physical Review A, 106, 033511(2022).

    [45] Chen Y H, Wang F, Cai Y J. Partially coherent light beam shaping via complex spatial coherence structure engineering[J]. Advances in Physics X, 7, 2009742(2022).

    [46] Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 1, 1-57(2009).

    [47] Brown T G. Unconventional polarization states. Beam propagation, focusing, and imaging[J]. Progress in Optics, 56, 81-129(2011).

    [48] Rosales-Guzmán C, Ndagano B, Forbes A. A review of complex vector light fields and their applications[J]. Journal of Optics, 20, 123001(2018).

    [49] Ye L Z, Yang L Q, Zheng X et al. Enhancing circular dichroism signals with vector beams[J]. Physical Review Letters, 126, 123001(2021).

    [50] Castellucci F, Clark T W, Selyem A et al. Atomic compass: detecting 3D magnetic field alignment with vector vortex light[J]. Physical Review Letters, 127, 233202(2021).

    [51] Berg-Johansen S, Töppel F, Stiller B et al. Classically entangled optical beams for high-speed kinematic sensing[J]. Optica, 2, 864-868(2015).

    [52] Bag A, Neugebauer M, Woźniak P et al. Transverse kerker scattering for angstrom localization of nanoparticles[J]. Physical Review Letters, 121, 193902(2018).

    [53] Ishihara J, Mori T, Suzuki T et al. Imprinting spatial helicity structure of vector vortex beam on spin texture in semiconductors[J]. Physical Review Letters, 130, 126701(2023).

    [54] Fickler R, Lapkiewicz R, Ramelow S et al. Quantum entanglement of complex photon polarization patterns in vector beams[J]. Physical Review A, 89, 060301(2014).

    [55] Barreiro J T, Wei T C, Kwiat P G. Remote preparation of single-photon “hybrid” entangled and vector-polarization states[J]. Physical Review Letters, 105, 030407(2010).

    [56] Li Y, Huang S Y, Wang M et al. Two-measurement tomography of high-dimensional orbital angular momentum entanglement[J]. Physical Review Letters, 130, 050805(2023).

    [57] Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 91, 233901(2003).

    [58] Xie X S, Chen Y Z, Yang K et al. Harnessing the point-spread function for high-resolution far-field optical microscopy[J]. Physical Review Letters, 113, 263901(2014).

    [59] Milione G, Nguyen T A, Leach J et al. Using the nonseparability of vector beams to encode information for optical communication[J]. Optics Letters, 40, 4887-4890(2015).

    [60] Zhu Z Y, Janasik M, Fyffe A et al. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams[J]. Nature Communications, 12, 1666(2021).

    [61] Xian M C, Xu Y, Ouyang X et al. Segmented cylindrical vector beams for massively-encoded optical data storage[J]. Science Bulletin, 65, 2072-2079(2020).

    [62] Parigi V, D'Ambrosio V, Arnold C et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory[J]. Nature Communications, 6, 7706(2015).

    [63] Min C J, Shen Z, Shen J F et al. Focused plasmonic trapping of metallic particles[J]. Nature Communications, 4, 2891(2013).

    [64] James D F V. Change of polarization of light beams on propagation in free space[J]. Journal of the Optical Society of America A, 11, 1641-1643(1994).

    [65] Gori F, Santarsiero M, Vicalvi S et al. Beam coherence-polarization matrix[J]. Pure and Applied Optics: Journal of the European Optical Society Part A, 7, 941-951(1998).

    [66] Gori F, Santarsiero M, Piquero G et al. Partially polarized Gaussian Schell-model beams[J]. Journal of Optics A: Pure and Applied Optics, 3, 1-9(2001).

    [67] Wolf E. Correlation-induced changes in the degree of polarization, the degree of coherence, and the spectrum of random electromagnetic beams on propagation[J]. Optics Letters, 28, 1078-1080(2003).

    [68] Korotkova O, Wolf E. Changes in the state of polarization of a random electromagnetic beam on propagation[J]. Optics Communications, 246, 35-43(2005).

    [69] Wolf E. Unified theory of coherence and polarization of random electromagnetic beams[J]. Physics Letters A, 312, 263-267(2003).

    [70] Wolf E[M]. Introduction to the theory of coherence and polarization of light(2007).

    [71] Friberg A T, Setälä T. Electromagnetic theory of optical coherence[J]. Journal of the Optical Society of America A, 33, 2431-2442(2016).

    [72] Shirai T, Korotkova O, Wolf E. A method of generating electromagnetic Gaussian Schell-model beams[J]. Journal of Optics A: Pure and Applied Optics, 7, 232-237(2005).

    [73] Korotkova O, Visser T D, Wolf E. Polarization properties of stochastic electromagnetic beams[J]. Optics Communications, 281, 515-520(2008).

    [74] Tong Z S, Cai Y J, Korotkova O. Ghost imaging with electromagnetic stochastic beams[J]. Optics Communications, 283, 3838-3845(2010).

    [75] Liu X L, Wang F, Zhang M H et al. Experimental demonstration of ghost imaging with an electromagnetic Gaussian Schell-model beam[J]. Journal of the Optical Society of America A, 32, 910-920(2015).

    [76] Raghunathan S B, Schouten H F, Visser T D. Correlation singularities in partially coherent electromagnetic beams[J]. Optics Letters, 37, 4179-4181(2012).

    [77] Raghunathan S B, Schouten H F, Visser T D. Topological reactions of correlation functions in partially coherent electromagnetic beams[J]. Journal of the Optical Society of America A, 30, 582-588(2013).

    [78] Korotkova O. Scintillation index of a stochastic electromagnetic beam propagating in random media[J]. Optics Communications, 281, 2342-2348(2008).

    [79] Cai Y J, Korotkova O, Eyyuboğlu H T et al. Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere[J]. Optics Express, 16, 15834-15846(2008).

    [80] Wang T, Zhao D M. Scattering theory of stochastic electromagnetic light waves[J]. Optics Letters, 35, 2412-2414(2010).

    [81] Chen Y H, Wang F, Liu L et al. Generation and propagation of a partially coherent vector beam with special correlation functions[J]. Physical Review A, 89, 013801(2014).

    [82] Zhu S J, Chen Y H, Wang J et al. Generation and propagation of a vector cosine-Gaussian correlated beam with radial polarization[J]. Optics Express, 23, 33099-33115(2015).

    [83] Chen Y H, Wang F, Yu J Y et al. Vector Hermite-Gaussian correlated Schell-model beam[J]. Optics Express, 24, 15232-15250(2016).

    [84] Hyde M W, Bose-Pillai S, Voelz D G et al. Generation of vector partially coherent optical sources using phase-only spatial light modulators[J]. Physical Review Applied, 6, 064030(2016).

    [85] Liang C H, Mi C K, Wang F et al. Vector optical coherence lattices generating controllable far-field beam profiles[J]. Optics Express, 25, 9872-9885(2017).

    [86] Mao H D, Chen Y H, Liang C H et al. Self-steering partially coherent vector beams[J]. Optics Express, 27, 14353-14368(2019).

    [87] Joshi S, Khan S N, Manisha P et al. Coherence-induced polarization effects in vector vortex beams[J]. Optics Letters, 45, 4815-4818(2020).

    [88] Joshi S, Khan S N, Senthilkumaran P et al. Statistical properties of partially coherent polarization singular vector beams[J]. Physical Review A, 103, 053502(2021).

    [89] Liu Y L, Dong Z, Wang F et al. Generation of a higher-order Poincaré sphere beam array with spatial coherence engineering[J]. Optics Letters, 47, 5220-5223(2022).

    [90] Liu Y L, Dong Z, Wang F et al. Experimental synthesis of higher-order Poincaré sphere beam array with spatial coherence engineering[J]. Applied Physics Letters, 122, 161106(2023).

    [91] Yuan B, Dong Z, Liu Y L et al. Robust high-order polarization arrays via vectorial spatial-coherence engineering[J]. Physical Review Applied, 20, 054031(2023).

    [92] Dong Z, Chen Y H, Wang F et al. Encoding higher-order polarization states into robust partially coherent optical beams[J]. Physical Review Applied, 18, 034036(2022).

    [93] Dong Z, Zhu Y M, Liu Y L et al. Compact generation of light beams carrying robust higher-order Poincaré polarization states[J]. Applied Physics Letters, 122, 221101(2023).

    [94] Novotny L, Hecht B[M]. Principles of nano-optics(2012).

    [95] Gil J J, Friberg A T, Setälä T et al. Structure of polarimetric purity of three-dimensional polarization states[J]. Physical Review A, 95, 053856(2017).

    [96] Korotkova O, Salem M, Wolf E. Beam conditions for radiation generated by an electromagnetic Gaussian Schell-model source[J]. Optics Letters, 29, 1173-1175(2004).

    [97] Gori F, Santarsiero M. Devising genuine spatial correlation functions[J]. Optics Letters, 32, 3531-3533(2007).

    [98] Gori F, Ramírez-Sánchez V, Santarsiero M et al. On genuine cross-spectral density matrices[J]. Journal of Optics A: Pure and Applied Optics, 11, 085706(2009).

    [99] Korotkova O, Wolf E. Generalized stokes parameters of random electromagnetic beams[J]. Optics Letters, 30, 198-200(2005).

    [100] Setälä T, Tervo J, Friberg A T. Contrasts of Stokes parameters in Young's interference experiment and electromagnetic degree of coherence[J]. Optics Letters, 31, 2669-2671(2006).

    [101] Setälä T, Tervo J, Friberg A T. Stokes parameters and polarization contrasts in Young's interference experiment[J]. Optics Letters, 31, 2208-2210(2006).

    [102] Tervo J, Setälä T, Roueff A et al. Two-point Stokes parameters: interpretation and properties[J]. Optics Letters, 34, 3074-3076(2009).

    [103] Tervo J, Setälä T, Turunen J et al. van Cittert-Zernike theorem with Stokes parameters[J]. Optics Letters, 38, 2301-2303(2013).

    [104] Laatikainen J, Friberg A T, Korotkova O et al. Poincaré sphere of electromagnetic spatial coherence[J]. Optics Letters, 46, 2143-2146(2021).

    [105] Laatikainen J, Friberg A T, Korotkova O et al. Singular value representation of the coherence Poincaré sphere[J]. Journal of the European Optical Society-Rapid Publications, 18, 12(2022).

    [106] Laatikainen J, Friberg A T, Korotkova O et al. Coherence Poincaré sphere of partially polarized optical beams[J]. Physical Review A, 105, 033506(2022).

    [107] Piquero G, Gori F, Romanini P et al. Synthesis of partially polarized Gaussian Schell-model sources[J]. Optics Communications, 208, 9-16(2002).

    [108] Santarsiero M, Borghi R, Ramírez-Sánchez V. Synthesis of electromagnetic Schell-model sources[J]. Journal of the Optical Society of America A, 26, 1437-1443(2009).

    [109] Ostrovsky A S, Martínez-Niconoff G, Arrizón V et al. Modulation of coherence and polarization using liquid crystal spatial light modulators[J]. Optics Express, 17, 5257-5264(2009).

    [110] Ostrovsky A S, Rodríguez-Zurita G, Meneses-Fabián C et al. Experimental generating the partially coherent and partially polarized electromagnetic source[J]. Optics Express, 18, 12864-12871(2010).

    [111] Ostrovsky A S, Olvera M A, Rickenstorff C et al. Generation of a secondary electromagnetic source with desired statistical properties[J]. Optics Communications, 283, 4490-4493(2010).

    [112] Wang F, Wu G F, Liu X L et al. Experimental measurement of the beam parameters of an electromagnetic Gaussian Schell-model source[J]. Optics Letters, 36, 2722-2724(2011).

    [113] Milione G, Sztul H I, Nolan D A et al. Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light[J]. Physical Review Letters, 107, 053601(2011).

    [114] Ostrovsky A S[M]. Coherent-mode representations in optics(2006).

    [115] Starikov A, Wolf E. Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields[J]. Journal of the Optical Society of America A, 72, 923-928(1982).

    [116] Chen X, Li J, Rafsanjani S M H et al. Synthesis of Im-Bessel correlated beams via coherent modes[J]. Optics Letters, 43, 3590-3593(2018).

    [117] Zhu X L, Wang F, Zhao C L et al. Experimental realization of dark and antidark diffraction-free beams[J]. Optics Letters, 44, 2260-2263(2019).

    [118] Zhang Y, Zhang X, Wang H Y et al. Generating a twisted Gaussian Schell-model beam with a coherent-mode superposition[J]. Optics Express, 29, 41964-41974(2021).

    [119] Martínez-Herrero R, Mejías P M. Elementary-field expansions of genuine cross-spectral density matrices[J]. Optics Letters, 34, 2303-2305(2009).

    [120] Martínez-Herrero R, Mejías P M, Gori F. Genuine cross-spectral densities and pseudo-modal expansions[J]. Optics Letters, 34, 1399-1401(2009).

    [121] Wang F, Lü H, Chen Y H et al. Three modal decompositions of Gaussian Schell-model sources: comparative analysis[J]. Optics Express, 29, 29676-29689(2021).

    [122] Hyde M W. Generating electromagnetic Schell-model sources using complex screens with spatially varying auto- and cross-correlation functions[J]. Results in Physics, 15, 102663(2019).

    [123] Wang F, Toselli I, Korotkova O. Two spatial light modulator system for laboratory simulation of random beam propagation in random media[J]. Applied Optics, 55, 1112-1117(2016).

    [124] Zhu X L, Yu J Y, Chen Y H et al. Experimental synthesis of random light sources with circular coherence by digital micro-mirror device[J]. Applied Physics Letters, 117, 121102(2020).

    [125] Zhu X L, Yu J Y, Wang F et al. Synthesis of vector nonuniformly correlated light beams by a single digital mirror device[J]. Optics Letters, 46, 2996-2999(2021).

    [126] Zhu X L, Yu J Y, Chen Y H et al. Generation of stochastic structured light beams with controllable beam parameters[J]. ACS Photonics, 10, 2272-2279(2023).

    [127] Turunen J, Halder A, Koivurova M et al. Measurement of spatial coherence of light[J]. Journal of the Optical Society of America A, 39, C214-C239(2022).

    [128] Leppänen L P, Saastamoinen K, Friberg A T et al. Detection of electromagnetic degree of coherence with nanoscatterers: comparison with Young's interferometer[J]. Optics Letters, 40, 2898-2901(2015).

    [129] Saastamoinen K, Partanen H, Friberg A T et al. Probing the electromagnetic degree of coherence of light beams with nanoscatterers[J]. ACS Photonics, 7, 1030-1035(2020).

    [130] Hassinen T, Tervo J, Setälä T et al. Hanbury Brown-Twiss effect with electromagnetic waves[J]. Optics Express, 19, 15188-15195(2011).

    [131] Shirai T. Modern aspects of intensity interferometry with classical light[J]. Progress in Optics, 62, 1-72(2017).

    [132] Huang Z F, Chen Y H, Wang F et al. Measuring complex degree of coherence of random light fields with generalized Hanbury Brown-Twiss experiment[J]. Physical Review Applied, 13, 044042(2020).

    [133] Dong Z, Huang Z F, Chen Y H et al. Measuring complex correlation matrix of partially coherent vector light via a generalized Hanbury Brown-Twiss experiment[J]. Optics Express, 28, 20634-20644(2020).

    [134] Cheng W, Haus J W, Zhan Q W. Propagation of vector vortex beams through a turbulent atmosphere[J]. Optics Express, 17, 17829-17836(2009).

    [135] Dong Z, Yuan B, Liu Y L et al. Stokes scintillations for vector beams in turbulence[J]. Chinese Optics Letters, 21, 100101(2023).

    [136] Wu G F, Wang F, Cai Y J. Coherence and polarization properties of a radially polarized beam with variable spatial coherence[J]. Optics Express, 20, 28301-28318(2012).

    [137] Bliokh K Y, Rodríguez-Fortuño F J, Nori F et al. Spin-orbit interactions of light[J]. Nature Photonics, 9, 796-808(2015).

    [138] Bliokh K Y, Alonso M A, Dennis M R. Geometric phases in 2D and 3D polarized fields: geometrical, dynamical, and topological aspects[J]. Reports on Progress in Physics, 82, 122401(2019).

    [139] Setälä T, Shevchenko A, Kaivola M et al. Degree of polarization for optical near fields[J]. Physical Review E, 66, 016615(2002).

    [140] Guo M W, Norrman A, Friberg A T et al. Probing coherence Stokes parameters of three-component light with nanoscatterers[J]. Optics Letters, 47, 2566-2569(2022).

    [141] Norrman A, Friberg A T, Gil J J et al. Dimensionality of random light fields[J]. Journal of the European Optical Society-Rapid Publications, 13, 36(2017).

    [142] Gil J J, Norrman A, Friberg A T et al. Nonregularity of three-dimensional polarization states[J]. Optics Letters, 43, 4611-4614(2018).

    [143] Gil J J, Norrman A, Friberg A T et al. Polarimetric purity and the concept of degree of polarization[J]. Physical Review A, 97, 023838(2018).

    [144] Gil J J, Norrman A, Friberg A T et al. Intensity and spin anisotropy of three-dimensional polarization states[J]. Optics Letters, 44, 3578-3581(2019).

    [145] Gil J J, Friberg A T, Norrman A et al. Effect of polarimetric nonregularity on the spin of three-dimensional polarization states[J]. New Journal of Physics, 23, 063059(2021).

    [146] Dong Y M, Wang F, Zhao C L et al. Effect of spatial coherence on propagation, tight focusing, and radiation forces of an azimuthally polarized beam[J]. Physical Review A, 86, 013840(2012).

    [147] Ping C C, Liang C H, Wang F et al. Radially polarized multi-Gaussian Schell-model beam and its tight focusing properties[J]. Optics Express, 25, 32475-32490(2017).

    [148] Tong R H, Dong Z, Chen Y H et al. Fast calculation of tightly focused random electromagnetic beams: controlling the focal field by spatial coherence[J]. Optics Express, 28, 9713-9727(2020).

    [149] Aviñoá M, Martínez-Herrero R, Carnicer A. Efficient calculation of highly focused electromagnetic Schell-model beams[J]. Optics Express, 29, 26220-26232(2021).

    [150] Yan C C, Li X Y, Cai Y J et al. Three-dimensional polarization state and spin structure of a tightly focused radially polarized Gaussian Schell-model beam[J]. Physical Review A, 106, 063522(2022).

    [151] Chen Y H, Wang F, Dong Z et al. Polarimetric dimension and nonregularity of tightly focused light beams[J]. Physical Review A, 101, 053825(2020).

    [152] Li X Y, Zhu X L, Liu L et al. Generation of optical 3D unpolarized lattices in a tightly focused random beam[J]. Optics Letters, 48, 3829-3832(2023).

    [153] Chen Y H, Wang F, Dong Z et al. Structure of transverse spin in focused random light[J]. Physical Review A, 104, 013516(2021).

    [154] Shen Y J, Zhan Q W, Wright L G et al. Roadmap on spatiotemporal light fields[J]. Journal of Optics, 25, 093001(2023).

    [155] Ding C L, Koivurova M, Turunen J et al. Temporal self-splitting of optical pulses[J]. Physical Review A, 97, 053838(2018).

    [156] Ding C L, Horoshko D, Korotkova O et al. Source coherence-induced control of spatiotemporal coherency vortices[J]. Optics Express, 30, 19871-19888(2022).

    [157] Hyde M W, Korotkova O, Spencer M F. Partially coherent sources whose coherent modes are spatiotemporal optical vortex beams[J]. Journal of Optics, 25, 035606(2023).

    [158] Guo L N, Chen Y H, Liu X L et al. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam[J]. Optics Express, 24, 13714-13728(2016).

    [159] Zhang H, Wang H Y, Lu X Y et al. Statistical properties of a partially coherent vector beam with controllable spatial coherence, vortex phase, and polarization[J]. Optics Express, 30, 29923-29939(2022).

    [160] Wang Z X, Yan C C, Dong Z et al. Effect of degree of polarization on localized spin density in tightly focusing of vortex beams[J]. IEEE Photonics Journal, 14, 6540008(2022).

    [161] Wang Z X, Yan C C, Wang F et al. Effect of optical spatial coherence on localized spin angular momentum density in tightly focused light[J]. Journal of the Optical Society of America A, 39, C58-C67(2022).

    [162] Norrman A, Setälä T, Friberg A T. Partial spatial coherence and partial polarization in random evanescent fields on lossless interfaces[J]. Journal of the Optical Society of America A, 28, 391-400(2011).

    [163] Norrman A, Gil J J, Friberg A T et al. Polarimetric nonregularity of evanescent waves[J]. Optics Letters, 44, 215-218(2019).

    [164] Norrman A, Ponomarenko S A, Friberg A T. Partially coherent surface plasmon polaritons[J]. Europhysics Letters, 116, 64001(2016).

    [165] Chen Y H, Norrman A, Ponomarenko S A et al. Plasmon coherence determination by nanoscattering[J]. Optics Letters, 42, 3279-3282(2017).

    [166] Mao H D, Chen Y H, Ponomarenko S A et al. Coherent pseudo-mode representation of partially coherent surface plasmon polaritons[J]. Optics Letters, 43, 1395-1398(2018).

    [167] Chen Y H, Norrman A, Ponomarenko S A et al. Partially coherent axiconic surface plasmon polariton fields[J]. Physical Review A, 97, 041801(2018).

    [168] Chen Y H, Norrman A, Ponomarenko S A et al. Coherence lattices in surface plasmon polariton fields[J]. Optics Letters, 43, 3429-3432(2018).

    [169] Daniel S, Saastamoinen K, Ponomarenko S A et al. Scattering of partially coherent surface plasmon polariton fields by metallic nanostripe[J]. Journal of the European Optical Society-Rapid Publications, 15, 4(2019).

    [170] Chen Y H, Norrman A, Ponomarenko S A et al. Partially coherent surface plasmon polariton vortex fields[J]. Physical Review A, 100, 053833(2019).

    [171] Chen Y H, Norrman A, Ponomarenko S A et al. Spin density in partially coherent surface-plasmon-polariton vortex fields[J]. Physical Review A, 103, 063511(2021).

    [172] Chen Y H, Norrman A, Ponomarenko S A et al. Optical coherence and electromagnetic surface waves[J]. Progress in Optics, 65, 105-172(2020).

    Yahong Chen, Zhen Dong, Yonglei Liu, Lin Liu, Fei Wang, Yangjian Cai. Research Progress in Partially Coherent Vector Fields: From Two-Dimensional Beams to Three-Dimensional Fields (Invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026007
    Download Citation