• Nano-Micro Letters
  • Vol. 16, Issue 1, 152 (2024)
Yaqi Geng1、†, Guoyin Chen1、†, Ran Cao*, Hongmei Dai, Zexu Hu, Senlong Yu, Le Wang, Liping Zhu, Hengxue Xiang**, and Meifang Zhu***
Author Affiliations
  • State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01345-0 Cite this Article
    Yaqi Geng, Guoyin Chen, Ran Cao, Hongmei Dai, Zexu Hu, Senlong Yu, Le Wang, Liping Zhu, Hengxue Xiang, Meifang Zhu. A Skin-Inspired Self-Adaptive System for Temperature Control During Dynamic Wound Healing[J]. Nano-Micro Letters, 2024, 16(1): 152 Copy Citation Text show less
    References

    [1] W.D. Li, K. Ke, J. Jia, J.H. Pu, X. Zhao et al., Recent advances in multiresponsive flexible sensors toward E-skin: a delicate design for versatile sensing. Small 18, e2103734 (2022).

    [2] M. Wang, Y. Luo, T. Wang, C. Wan, L. Pan et al., Artificial skin perception. Adv. Mater. 33, 2003014 (2021).

    [3] J.Y. Oh, Z. Bao, Second skin enabled by advanced electronics. Adv. Sci. 6, 1900186 (2019).

    [4] A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016).

    [5] C. Wang, C. Pan, Z. Wang, Electronic skin for closed-loop systems. ACS Nano 13, 12287–12293 (2019).

    [6] L.E. Osborn, R. Venkatasubramanian, M. Himmtann, C.W. Moran, J.M. Pierce et al., Evoking natural thermal perceptions using a thin-film thermoelectric device with high cooling power density and speed. Nat. Biomed. Eng. (2023).

    [7] S.R. Madhvapathy, J.J. Wang, H. Wang, M. Patel, A. Chang et al., Implantable bioelectronic systems for early detection of kidney transplant rejection. Science 381, 1105–1112 (2023).

    [8] M. Jiang, Q. Shen, J. Zhang, S. An, S. Ma et al., Bioinspired temperature regulation in interfacial evaporation. Adv. Funct. Mater. 30, 1910481 (2020).

    [9] C.L. Tan, E.K. Cooke, D.E. Leib, Y.C. Lin, G.E. Daly et al., Warm-sensitive neurons that control body temperature. Cell 167, 47–59 (2016).

    [10] R. Dong, B. Guo, Smart wound dressings for wound healing. Nano Today 41, 101290 (2021).

    [11] D. Lou, Q. Pang, X. Pei, S. Dong, S. Li et al., Flexible wound healing system for pro-regeneration, temperature monitoring and infection early warning. Biosens. Bioelectron. 162, 112275 (2020).

    [12] P. Tang, Y. Liu, Y. Liu, H. Meng, Z. Liu et al., Thermochromism-induced temperature self-regulation and alternating photothermal nanohelix clusters for synergistic tumor chemo/photothermal therapy. Biomaterials 188, 12–23 (2019).

    [13] Y. Gao, H. Du, Z. Xie, M. Li, J. Zhu et al., Self-adhesive photothermal hydrogel films for solar-light assisted wound healing. J. Mater. Chem. B 7, 3644–3651 (2019).

    [14] G. Chen, K. Hou, N. Yu, P. Wei, T. Chen et al., Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine. Nat. Commun. 13, 7789 (2022).

    [15] S. Zhao, R. Zhu, Electronic skin with multifunction sensors based on thermosensation. Adv. Mater. 29, 1606151 (2017).

    [16] Y. Lee, J. Park, A. Choe, S. Cho, J. Kim et al., Mimicking human and biological skins for multifunctional skin electronics. Adv. Funct. Mater. 30, 1904523 (2020).

    [17] K. Kwon, J.U. Kim, S.M. Won, J. Zhao, R. Avila et al., A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat. Biomed. Eng. 7, 1215–1228 (2023).

    [18] W. Ouyang, W. Lu, Y. Zhang, Y. Liu, J.U. Kim et al., A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals. Nat. Biomed. Eng. 7, 1252–1269 (2023).

    [19] J. Tu, J. Min, Y. Song, C. Xu, J. Li et al., A wireless patch for the monitoring of C-reactive protein in sweat. Nat. Biomed. Eng. 7, 1293–1306 (2023).

    [20] S. Kim, Y.S. Oh, K. Lee, S. Kim, W.-Y. Maeng et al., Battery-free, wireless, cuff-type, multimodal physical sensor for continuous temperature and strain monitoring of nerve. Small 19, 2206839 (2023).

    [21] R. Chen, T. Luo, D. Geng, Z. Shen, W. Zhou, Facile fabrication of a fast-response flexible temperature sensor via laser reduced graphene oxide for contactless human-machine interface. Carbon 187, 35–46 (2022).

    [22] C. Okutani, T. Yokota, T. Someya, Ultrathin fiber-mesh polymer thermistors. Adv. Sci. 9, e2202312 (2022).

    [23] C. Okutani, T. Yokota, R. Matsukawa, T. Someya, Suppressing the negative temperature coefficient effect of resistance in polymer composites with positive temperature coefficients of resistance by coating with parylene. J. Mater. Chem. C 8, 7304–7308 (2020).

    [24] M. Sang, K. Kang, Y. Zhang, H. Zhang, K. Kim et al., Ultrahigh sensitive Au-doped silicon nanomembrane based wearable sensor arrays for continuous skin temperature monitoring with high precision. Adv. Mater. 34, e2105865 (2022).

    [25] G.Y. Bae, J.T. Han, G. Lee, S. Lee, S.W. Kim et al., Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity. Adv. Mater. 30, e1803388 (2018).

    [26] M. Li, Y. Shi, H. Gao, Z. Chen, Bio-inspired nanospiky metal particles enable thin, flexible, and thermo-responsive polymer nanocomposites for thermal regulation. Adv. Funct. Mater. 30, 1910328 (2020).

    [27] M. Li, G. Cai, J. Holoubek, K. Yu, H. Liu et al., Hierarchically structured metal carbides as conductive fillers in thermo-responsive polymer nanocomposites for battery safety. Nano Energy 103, 107726 (2022).

    [28] Z. Chen, P.-C. Hsu, J. Lopez, Y. Li, J.W.F. To et al., Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy 1, 15009 (2016).

    [29] T. Yokota, Y. Inoue, Y. Terakawa, J. Reeder, M. Kaltenbrunner et al., Ultraflexible, large-area, physiological temperature sensors for multipoint measurements. Proc. Natl. Acad. Sci. U.S.A. 112, 14533–14538 (2015).

    [30] M. Li, K. Chang, W. Zhong, C. Xiang, W. Wang et al., A highly stretchable, breathable and thermoregulatory electronic skin based on the polyolefin elastomer nanofiber membrane. Appl. Surf. Sci. 486, 249–256 (2019).

    [31] S. Xiang, D. Liu, C. Jiang, W. Zhou, D. Ling et al., Liquid-metal-based dynamic thermoregulating and self-powered electronic skin. Adv. Funct. Mater. 31, 2100940 (2021).

    [32] S. Xiang, J. Tang, L. Yang, Y. Guo, Z. Zhao et al., Deep learning-enabled real-time personal handwriting electronic skin with dynamic thermoregulating ability. npj Flex. Electron. 6, 59 (2022).

    [33] J. Huang, Z. Xu, W. Qiu, F. Chen, Z. Meng et al., Stretchable and heat-resistant protein-based electronic skin for human thermoregulation. Adv. Funct. Mater. 30, 1910547 (2020).

    [34] J. Wu, W. Huang, Y. Liang, Z. Wu, B. Zhong et al., Self-calibrated, sensitive, and flexible temperature sensor based on 3D chemically modified graphene hydrogel. Adv. Electron. Mater. 7, 2001084 (2021).

    [35] R. You, Y.-Q. Liu, Y.-L. Hao, D.-D. Han, Y.-L. Zhang et al., Laser fabrication of graphene-based flexible electronics. Adv. Mater. 32, 1901981 (2020).

    [36] T.S.D. Le, H.P. Phan, S. Kwon, S. Park, Y. Jung et al., Recent advances in laser-induced graphene: mechanism, fabrication, properties, and applications in flexible electronics. Adv. Funct. Mater. 32, 2205158 (2022).

    [37] G. Karimi, I. Lau, M. Fowler, M. Pope, Parametric study of laser-induced graphene conductive traces and their application as flexible heaters. Int. J. Energy Res. 45, 13712–13725 (2021).

    [38] Z. Sun, S. Fang, Y.H. Hu, 3D graphene materials: from understanding to design and synthesis control. Chem. Rev. 120, 10336–10453 (2020).

    [39] J. Xu, R. Li, S. Ji, B. Zhao, T. Cui et al., Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications. ACS Nano 15, 8907–8918 (2021).

    [40] Y. Qiao, Y. Wang, H. Tian, M. Li, J. Jian et al., Multilayer graphene epidermal electronic skin. ACS Nano 12, 8839–8846 (2018).

    [41] S.Y. Xia, Y. Long, Z. Huang, Y. Zi, L.Q. Tao et al., Laser-induced graphene (LIG)-based pressure sensor and triboelectric nanogenerator toward high-performance self-powered measurement-control combined system. Nano Energy 96, 107099 (2022).

    [42] J. Jeon, H.-B.-R. Lee, Z. Bao, Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv. Mater. 25, 850–855 (2013).

    [43] Y. Geng, R. Cao, M.T. Innocent, Z. Hu, L. Zhu et al., A high-sensitive wearable sensor based on conductive polymer composites for body temperature monitoring. Compos. Part A Appl. Sci. Manuf. 163, 107269 (2022).

    [44] L. Liu, R. Li, F. Liu, L. Huang, W. Liu et al., Highly elastic and strain sensing corn protein electrospun fibers for monitoring of wound healing. ACS Nano 17, 9600–9610 (2023).

    [45] X. Tang, X. Chen, S. Zhang, X. Gu, R. Wu et al., Silk-inspired in situ hydrogel with anti-tumor immunity enhanced photodynamic therapy for melanoma and infected wound healing. Adv. Funct. Mater. 31, 2101320 (2021).

    [46] X. Xu, X. Liu, L. Tan, Z. Cui, X. Yang et al., Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods. Acta Biomater. 77, 352–364 (2018).

    [47] T. Someya, Z. Bao, G.G. Malliaras, The Rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    Yaqi Geng, Guoyin Chen, Ran Cao, Hongmei Dai, Zexu Hu, Senlong Yu, Le Wang, Liping Zhu, Hengxue Xiang, Meifang Zhu. A Skin-Inspired Self-Adaptive System for Temperature Control During Dynamic Wound Healing[J]. Nano-Micro Letters, 2024, 16(1): 152
    Download Citation