• Acta Optica Sinica
  • Vol. 43, Issue 18, 1899905 (2023)
Yulei Chi1 and Chuanfeng Zhao2、*
Author Affiliations
  • 1College of Global Change and Earth System Sciences, Beijing Normal University, Beijing 100875, China
  • 2Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
  • show less
    DOI: 10.3788/AOS230583 Cite this Article Set citation alerts
    Yulei Chi, Chuanfeng Zhao. Progress and Challenges of Ozone Satellite Remote Sensing Inversion[J]. Acta Optica Sinica, 2023, 43(18): 1899905 Copy Citation Text show less
    References

    [1] Das S S, Ratnam M V, Uma K N et al. Influence of tropical cyclones on tropospheric ozone: possible implications[J]. Atmospheric Chemistry and Physics, 16, 4837-4847(2016).

    [2] Mohanakumar K[M]. Stratosphere troposphere interactions: an introduction(2008).

    [3] Lu X, Hong J Y, Zhang L et al. Severe surface ozone pollution in China: a global perspective[J]. Environmental Science & Technology Letters, 5, 487-494(2018).

    [4] McKenzie R L, Aucamp P J, Bais A F et al. Ozone depletion and climate change: impacts on UV radiation[J]. Photochemical & Photobiological Sciences, 10, 182-198(2011).

    [5] Zhang J J, Wei Y J, Fang Z F. Ozone pollution: a major health hazard worldwide[J]. Frontiers in Immunology, 10, 2518(2019).

    [6] Zhong F. Study of spatial and temporal variations of ozone and its main causes in Hong Kong[D], 6-9(2015).

    [7] Lelieveld J, Dentener F J. What controls tropospheric ozone?[J]. Journal of Geophysical Research: Atmospheres, 105, 3531-3551(2000).

    [8] Ma M L. Study on influencing factors of temporal and spatial analysis of tropospheric ozone and estimation of near-surface ozone[J]. Acta Geodaetica et Cartographica Sinica, 49, 1507(2020).

    [9] Ancellet G, Daskalakis N, Raut J C et al. Analysis of the latitudinal variability of tropospheric ozone in the arctic using the large number of aircraft and ozonesonde observations in early summer 2008[J]. Atmospheric Chemistry and Physics, 16, 13341-13358(2016).

    [10] Oikonomakis E, Aksoyoglu S, Wild M et al. Solar“brightening”impact on summer surface ozone between 1990 and 2010 in Europe–a model sensitivity study of the influence of the aerosol–radiation interactions[J]. Atmospheric Chemistry and Physics, 18, 9741-9765(2018).

    [11] David L M, Girach I A, Nair P R. Distribution of ozone and its precursors over Bay of Bengal during winter 2009: role of meteorology[J]. Annales Geophysicae, 29, 1613-1627(2011).

    [12] Döll P. Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment[J]. Environmental Research Letters, 4, 035006(2009).

    [13] Zhang W, Zou Y, Zheng X D et al. Characteristics of the vertical distribution of tropospheric ozone in late autumn at Yangjiang Station in Pearl River Delta (PRD), China. PartⅠ: observed event[J]. Atmospheric Environment, 244, 117898(2021).

    [14] Pearce W, Holmberg K, Hellsten I et al. Climate change on twitter: topics, communities and conversations about the 2013 IPCC working group 1 report[J]. PLoS One, 9, e94785(2014).

    [15] Rider C F, Carlsten C. Air pollution and DNA methylation: effects of exposure in humans[J]. Clinical Epigenetics, 11, 1-15(2019).

    [16] Baasandorj M, Fleming E L, Jackman C H et al. O(1D) kinetic study of key ozone depleting substances and greenhouse gases[J]. The Journal of Physical Chemistry A, 117, 2434-2445(2013).

    [17] Xue L K. Study on atmospheric chemistry and long-range transport at high altitudes in the lower troposphere over China[D], 63-112(2011).

    [18] Cristofanelli P, Bracci A, Sprenger M et al. Tropospheric ozone variations at the Nepal Climate Observatory-Pyramid (Himalayas, 5079 m a.s.l.) and influence of deep stratospheric intrusion events[J]. Atmospheric Chemistry and Physics, 10, 6537-6549(2010).

    [19] Derwent R G, Utembe S R, Jenkin M E et al. Tropospheric ozone production regions and the intercontinental origins of surface ozone over Europe[J]. Atmospheric Environment, 112, 216-224(2015).

    [20] Safieddine S, Boynard A, Hao N et al. Tropospheric ozone variability during the East Asian summer monsoon as observed by satellite (IASI), aircraft (MOZAIC) and ground stations[J]. Atmospheric Chemistry and Physics, 16, 10489-10500(2016).

    [21] Liu H, Liu S, Xue B R et al. Ground-level ozone pollution and its health impacts in China[J]. Atmospheric Environment, 173, 223-230(2018).

    [22] Ponka A, Virtanen M. Chronic bronchitis, emphysema, and low-level air pollution in Helsinki, 1987-1989[J]. Environmental Research, 65, 207-217(1994).

    [23] Lee D S, Holland M R, Falla N. The potential impact of ozone on materials in the U.K[J]. Atmospheric Environment, 30, 1053-1065(1996).

    [24] Fishman J, Crutzen P J. The origin of ozone in the troposphere[J]. Nature, 274, 855-858(1978).

    [25] Seinfeld J H. Air pollution: a half century of progress[J]. AIChE Journal, 50, 1096-1108(2004).

    [26] Walcek C J, Yuan H H. Calculated influence of temperature-related factors on ozone formation rates in the lower troposphere[J]. Journal of Applied Meteorology, 34, 1056-1069(1995).

    [27] Dueñas C, Fernández M C, Cañete S et al. Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean Coast[J]. Science of the Total Environment, 299, 97-113(2002).

    [28] Chen S J, Tong J C, Kobayashi K et al. Influences of the meteorological factors on the ozone concentration near the ground[J]. Journal of Central China Normal University (Natural Sciences), 39, 273-277(2005).

    [29] Cooper O R, Parrish D D, Ziemke J et al. Global distribution and trends of tropospheric ozone: an observation-based review[J]. Elementa: Science of the Anthropocene, 2, 29(2014).

    [30] Trainer M, Parrish D D, Goldan P D et al. Review of observation-based analysis of the regional factors influencing ozone concentrations[J]. Atmospheric Environment, 34, 2045-2061(2000).

    [31] Lu X A, Zhang L, Wang X L et al. Rapid increases in warm-season surface ozone and resulting health impact in China since 2013[J]. Environmental Science & Technology Letters, 7, 240-247(2020).

    [32] Zhao Y B, Zhang K, Xu X T et al. Substantial changes in nitrogen dioxide and ozone after excluding meteorological impacts during the COVID-19 outbreak in mainland China[J]. Environmental Science & Technology Letters, 7, 402-408(2020).

    [33] Li T W, Cheng X. Estimating daily full-coverage surface ozone concentration using satellite observations and a spatiotemporally embedded deep learning approach[J]. International Journal of Applied Earth Observation and Geoinformation, 101, 102356(2021).

    [34] Dave J V, Mateer C L. A preliminary study on the possibility of estimating total atmospheric ozone from satellite measurements[J]. Journal of the Atmospheric Sciences, 24, 414-427(1967).

    [35] Petropavlovskikh I, Bhartia P K, DeLuisi J. New Umkehr ozone profile retrieval algorithm optimized for climatological studies[J]. Geophysical Research Letters, 32, L16808(2005).

    [36] Coldewey-Egbers M, Weber M, Buchwitz M et al. Application of a modified DOAS method for total ozone retrieval from GOME data at high polar latitudes[J]. Advances in Space Research, 34, 749-753(2004).

    [37] Zhao F, Liu C, Cai Z N et al. Ozone profile retrievals from TROPOMI: implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China[J]. Science of the Total Environment, 764, 142886(2021).

    [38] Calfapietra C, Fares S, Manes F et al. Role of Biogenic Volatile Organic Compounds (BVOC) emitted by urban trees on ozone concentration in cities: a review[J]. Environmental Pollution, 183, 71-80(2013).

    [39] Chang H H, Zhou J W, Fuentes M. Impact of climate change on ambient ozone level and mortality in southeastern United States[J]. International Journal of Environmental Research and Public Health, 7, 2866-2880(2010).

    [40] Zhang Y Z, Wang Y H. Climate-driven ground-level ozone extreme in the fall over the Southeast United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 10025-10030(2016).

    [41] Zhao S H, Yang X Y, Li Z Q et al. Advances of ozone satellite remote sensing in 60 years[J]. National Remote Sensing Bulletin, 26, 817-833(2022).

    [42] Fan H, Zhao C F, Yang Y K. A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014-2018[J]. Atmospheric Environment, 220, 117066(2020).

    [43] Ma Z Q, Xu J, Quan W J et al. Significant increase of surface ozone at a rural site, north of Eastern China[J]. Atmospheric Chemistry and Physics, 16, 3969-3977(2016).

    [44] Wang Q Y, Gao R S, Cao J J et al. Observations of high level of ozone at Qinghai Lake Basin in the northeastern Qinghai-Tibetan Plateau, Western China[J]. Journal of Atmospheric Chemistry, 72, 19-26(2015).

    [45] Ran L, Lin W L, Deji Y Z et al. Surface gas pollutants in Lhasa, a highland city of Tibet-current levels and pollution implications[J]. Atmospheric Chemistry and Physics, 14, 10721-10730(2014).

    [46] Fujita E M, Campbell D E, Stockwell W R et al. Past and future ozone trends in California′s South Coast Air Basin: reconciliation of ambient measurements with past and projected emission inventories[J]. Journal of the Air & Waste Management Association, 63, 54-69(2013).

    [47] Ou J M, Yuan Z B, Zheng J Y et al. Ambient ozone control in a photochemically active region: short-term despiking or long-term attainment?[J]. Environmental Science & Technology, 50, 5720-5728(2016).

    [48] Theys N, van Roozendael M, Hendrick F et al. Global observations of tropospheric BrO columns using GOME-2 satellite data[J]. Atmospheric Chemistry and Physics, 11, 1791-1811(2011).

    [49] Ebojie F, von Savigny C, Ladstätter-Weißenmayer A et al. Tropospheric column amount of ozone retrieved from SCIAMACHY limb-nadir-matching observations[J]. Atmospheric Measurement Techniques, 7, 2073-2096(2014).

    [50] Eskes H J, Brinksma E J, Veefkind J P et al. Retrieval and validation of ozone columns derived from measurements of SCIAMACHY on Envisat[J]. Atmospheric Chemistry and Physics Discussions, 5, 4429-4475(2005).

    [51] Zhang C X, Liu C, Hu Q H et al. Satellite UV-Vis spectroscopy: implications for air quality trends and their driving forces in China during 2005-2017[J]. Light: Science & Applications, 8, 100(2019).

    [52] Flynn L E, Homstein J, Hilsenrath E. The ozone mapping and profiler suite (OMPS). The next generation of US ozone monitoring instruments[C], 1-4(2004).

    [53] Flynn L, Long C, Wu X et al. Performance of the ozone mapping and profiler suite (OMPS) products[J]. Journal of Geophysical Research: Atmospheres, 119, 6181-6195(2014).

    [54] Garane K, Koukouli M E, Verhoelst T et al. TROPOMI/S5P total ozone column data: global ground-based validation and consistency with other satellite missions[J]. Atmospheric Measurement Techniques, 12, 5263-5287(2019).

    [55] Mettig N, Weber M, Rozanov A et al. Combined UV and IR ozone profile retrieval from TROPOMI and CrIS measurements[J]. Atmospheric Measurement Techniques, 15, 2955-2978(2022).

    [56] Zhang C X, Liu C, Wang Y et al. Preflight evaluation of the performance of the Chinese environmental trace gas monitoring instrument (EMI) by spectral analyses of nitrogen dioxide[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 3323-3332(2018).

    [57] Zhang C X, Liu C, Chan K L et al. First observation of tropospheric nitrogen dioxide from the Environmental Trace Gases Monitoring Instrument onboard the GaoFen-5 satellite[J]. Light: Science & Applications, 9, 66(2020).

    [58] Xia C Z, Liu C, Cai Z N et al. First sulfur dioxide observations from the environmental trace gases monitoring instrument (EMI) onboard the GeoFen-5 satellite[J]. Science Bulletin, 66, 969-973(2021).

    [59] Coheur P F, Barret B, Turquety S et al. Retrieval and characterization of ozone vertical profiles from a thermal infrared nadir sounder[J]. Journal of Geophysical Research: Atmospheres, 110, D24303(2005).

    [60] Divakarla M, Barnet C, Goldberg M et al. Evaluation of Atmospheric Infrared Sounder ozone profiles and total ozone retrievals with matched ozonesonde measurements, ECMWF ozone data, and Ozone Monitoring Instrument retrievals[J]. Journal of Geophysical Research: Atmospheres, 113, D15308(2008).

    [61] Nassar R, Logan J A, Worden H M et al. Validation of Tropospheric Emission Spectrometer (TES) nadir ozone profiles using ozonesonde measurements[J]. Journal of Geophysical Research: Atmospheres, 113, D15-17(2008).

    [62] Clerbaux C, Boynard A, Clarisse L et al. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder[J]. Atmospheric Chemistry and Physics, 9, 6041-6054(2009).

    [63] Boynard A, Clerbaux C, Coheur P F et al. Measurements of total and tropospheric ozone from IASI: comparison with correlative satellite, ground-based and ozonesonde observations[J]. Atmospheric Chemistry and Physics, 9, 6255-6271(2009).

    [64] Ma P F, Chen L F, Wang Z T et al. Ozone profile retrievals from the cross-track infrared sounder[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 3985-3994(2016).

    [65] Wang Y P, Li X Y, Chen L F et al. Overview of infrared limb sounding[J]. Journal of Remote Sensing, 20, 513-527(2016).

    [66] Wellemeyer C G, Bhartia P K, McPeters R D et al. A new release of data from the Total Ozone Mapping Spectrometer (TOMS)[J]. SPARC Newsletter, 22, 37-38(2004).

    [67] Balis D, Kroon M, Koukouli M E et al. Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations[J]. Journal of Geophysical Research: Atmospheres, 112, D24-46(2007).

    [68] Zhang Y, Gao Y, Zhu S Y et al. Variation of total ozone over China for 30 years analyzed by multi-source satellite remote sensing data[J]. Journal of Geo-Information Science, 16, 971-978(2014).

    [69] Zhang Y, Wang W H, Zhang X Y. Distribution and variation of atmospheric total column ozone based on satellite remote sensing data[J]. Science & Technology Review, 33, 23-29(2015).

    [70] Peng X L. Spatio-temporal reconstruction for globally remotely sensed total ozone production[D](2017).

    [71] Rodgers C D. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation[J]. Reviews of Geophysics, 14, 609-624(1976).

    [72] Bhartia P K, McPeters R D, Flynn L E et al. Solar Backscatter UV (SBUV) total ozone and profile algorithm[J]. Atmospheric Measurement Techniques, 6, 2533-2548(2013).

    [73] Ziemke J R, Chandra S, Duncan B N et al. Tropospheric ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative's Chemical Transport Model[J]. Journal of Geophysical Research: Atmospheres, 111, D19303(2006).

    [74] Huang F X, Liu N Q, Zhao M X et al. Vertical ozone profiles deduced from measurements of SBUS on FY-3 satellite[J]. Chinese Science Bulletin, 55, 943-948(2010).

    [75] Huang F X, Zhao M X, Yang C J et al. Inversion algorithm and comparative inversion test of vertical profile of ultraviolet ozone in Fengyun-3 satellite[J]. Progress in Natural Science, 18, 1136-1142(2008).

    [76] Miles G M, Siddans R, Kerridge B J et al. Tropospheric ozone and ozone profiles retrieved from GOME-2 and their validation[J]. Atmospheric Measurement Techniques, 8, 385-398(2015).

    [77] Flynn L, Long C, Wu X et al. Performance of the ozone mapping and profiler suite (OMPS) products[J]. Journal of Geophysical Research: Atmospheres, 119, 6181-6195(2014).

    [78] Arosio C, Rozanov A, Malinina E et al. Retrieval of ozone profiles from OMPS limb scattering observations[J]. Atmospheric Measurement Techniques, 11, 2135-2149(2018).

    [79] Liu C. Satellite remote sensing atmospheric ozone profile inversion algorithm[P].

    [80] Kroon M, de Haan J F, Veefkind J P et al. Validation of operational ozone profiles from the Ozone Monitoring Instrument[J]. Journal of Geophysical Research: Atmospheres, 116, D18305(2011).

    [81] Bak J, Liu X, Wei J C et al. Improvement of OMI ozone profile retrievals in the upper troposphere and lower stratosphere by the use of a tropopause-based ozone profile climatology[J]. Atmospheric Measurement Techniques, 6, 2239-2254(2013).

    [82] Susskind J, Barnet C D, Blaisdell J M. Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 41, 390-409(2003).

    [83] Wei J C, Pan L L, Maddy E et al. Ozone profile retrieval from an advanced infrared sounder: experiments with tropopause-based climatology and optimal estimation approach[J]. Journal of Atmospheric and Oceanic Technology, 27, 1123-1139(2010).

    [84] Bowman K W, Rodgers C D, Kulawik S S et al. Tropospheric emission spectrometer: retrieval method and error analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 44, 1297-1307(2006).

    [85] Worden H M, Logan J A, Worden J R et al. Comparisons of Tropospheric Emission Spectrometer (TES) ozone profiles to ozonesondes: methods and initial results[J]. Journal of Geophysical Research: Atmospheres, 112, D03309(2007).

    [86] Natraj V, Liu X, Kulawik S et al. Multi-spectral sensitivity studies for the retrieval of tropospheric and lowermost tropospheric ozone from simulated clear-sky GEO-CAPE measurements[J]. Atmospheric Environment, 45, 7151-7165(2011).

    [87] Zhang X X, Zhang Y, Lu X Y et al. Estimation of lower-stratosphere-to-troposphere ozone profile using long short-term memory (LSTM)[J]. Remote Sensing, 13, 1374(2021).

    [88] Fishman J, Larsen J C. Distribution of total ozone and stratospheric ozone in the tropics: implications for the distribution of tropospheric ozone[J]. Journal of Geophysical Research: Atmospheres, 92, 6627-6634(1987).

    [89] Kim J H, Hudson R D, Thompson A M. A new method of deriving time-averaged tropospheric column ozone over the tropics using total ozone mapping spectrometer (TOMS) radiances: Intercomparison and analysis using TRACE A data[J]. Journal of Geophysical Research: Atmospheres, 101, 24317-24330(1996).

    [90] Hudson R D, Thompson A M. Tropical tropospheric ozone from total ozone mapping spectrometer by a modified residual method[J]. Journal of Geophysical Research: Atmospheres, 103, 22129-22145(1998).

    [91] Schoeberl M R, Ziemke J R, Bojkov B et al. A trajectory-based estimate of the tropospheric ozone column using the residual method[J]. Journal of Geophysical Research: Atmospheres, 112, D24-49(2007).

    [92] Kim J H, Newchurch M J, Han K. Distribution of tropical tropospheric ozone determined by the scan-angle method applied to TOMS measurements[J]. Journal of the Atmospheric Sciences, 58, 2699-2708(2001).

    [93] Ziemke J R, Chandra S, Bhartia P K. “Cloud slicing”: a new technique to derive upper tropospheric ozone from satellite measurements[J]. Journal of Geophysical Research: Atmospheres, 106, 9853-9867(2001).

    [94] Cobourn W G, Dolcine L, French M et al. A comparison of nonlinear regression and neural network models for ground-level ozone forecasting[J]. Journal of the Air & Waste Management Association, 50, 1999-2009(2000).

    [95] Cannon A J, Lord E R. Forecasting summertime surface-level ozone concentrations in the lower Fraser valley of British Columbia: an ensemble neural network approach[J]. Journal of the Air & Waste Management Association, 50, 322-339(2000).

    [96] Chaloulakou A, Saisana M, Spyrellis N. Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens[J]. Science of the Total Environment, 313, 1-13(2003).

    [97] Wang W J, Lu W Z, Wang X K et al. Prediction of maximum daily ozone level using combined neural network and statistical characteristics[J]. Environment International, 29, 555-562(2003).

    [98] Chattopadhyay S, Bandyopadhyay G. Artificial neural network with backpropagation learning to predict mean monthly total ozone in Arosa, Switzerland[J]. International Journal of Remote Sensing, 28, 4471-4482(2007).

    [99] Zhang H C, Liu Z Y, Xu D W et al. Research on software sensor of ozone concentration based on RBF neural networks model[J]. Journal of Dalian University of Technology, 50, 1020-1023(2010).

    [100] Luna A S, Paredes M L L, de Oliveira G C G et al. Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil[J]. Atmospheric Environment, 98, 98-104(2014).

    [101] Taylan O. Modelling and analysis of ozone concentration by artificial intelligent techniques for estimating air quality[J]. Atmospheric Environment, 150, 356-365(2017).

    [102] Gao M, Yin L T, Ning J C. Artificial neural network model for ozone concentration estimation and Monte Carlo analysis[J]. Atmospheric Environment, 184, 129-139(2018).

    [103] Liu R Y, Ma Z W, Liu Y et al. Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: a machine learning approach[J]. Environment International, 142, 105823(2020).

    [104] Zhang X Y, Zhao L M, Cheng M M et al. Estimating ground-level ozone concentrations in Eastern China using satellite-based precursors[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 4754-4763(2020).

    [105] Li R, Zhao Y L, Zhou W H et al. Developing a novel hybrid model for the estimation of surface 8 h ozone (O3) across the remote Tibetan Plateau during 2005–2018[J]. Atmospheric Chemistry and Physics, 20, 6159-6175(2020).

    [106] DeLang M N, Becker J S, Chang K L et al. Mapping yearly fine resolution global surface ozone through the Bayesian maximum entropy data fusion of observations and model output for 1990–2017[J]. Environmental Science & Technology, 55, 4389-4398(2021).

    [107] Wang Y, Yuan Q Q, Zhu L Y et al. Spatiotemporal estimation of hourly 2-km ground-level ozone over China based on Himawari-8 using a self-adaptive geospatially local model[J]. Geoscience Frontiers, 13, 101286(2022).

    [108] Bian J C, Chen H B, Zhao Y L et al. Variation features of total atmospheric ozone in Beijing and Kunming based on Dobson and TOMS data[J]. Advances in Atmospheric Sciences, 19, 279-286(2002).

    [109] Chen D, Zhou B, Chen L M. The retrieval of atmospheric ozone column densities using zenith-sky scattered light observations[J]. Journal of Fudan University (Natural Science), 47, 478-486(2008).

    [110] Hong H, Lee H, Kim J et al. First comparison of OMI-DOAS total ozone using ground-based observations at a megacity site in East Asia: causes of discrepancy and improvement in OMI-DOAS total ozone during summer[J]. Journal of Geophysical Research: Atmospheres, 119, 10058-10067(2014).

    [111] Cai Z N, Wang Y, Zheng X D et al. Validation of GOME ozone profiles and tropospheric column ozone with ozone sonde over China[J]. Journal of Applied Meteorological Science, 20, 337-345(2009).

    [112] Zhang L, Ding M H, Bian L G et al. Validation of AIRS temperature and ozone profiles over Antarctica[J]. Chinese Journal of Geophysics, 63, 1318-1331(2020).

    [113] Chen Y, Liu H L, Duan M Z et al. Validation of ozone product by satellite OMPS with sounding measurements over Beijing[J]. Remote Sensing Technology and Application, 35, 723-730(2020).

    [114] Wang Z J, Chen S B, Yang C Y et al. A method for retrieving vertical ozone profiles from limb scattered measurements[J]. Acta Meteorologica Sinica, 25, 659-668(2011).

    [115] van Peet J C A, van der A R J, Tuinder O N E et al. Ozone ProfilE Retrieval Algorithm (OPERA) for nadir-looking satellite instruments in the UV–VIS[J]. Atmospheric Measurement Techniques, 7, 859-876(2014).

    [116] Zawada D J, Rieger L A, Bourassa A E et al. Tomographic retrievals of ozone with the OMPS Limb Profiler: algorithm description and preliminary results[J]. Atmospheric Measurement Techniques, 11, 2375-2393(2018).

    [117] Wu R R, Xie S D. Spatial distribution of ozone formation in China derived from emissions of speciated volatile organic compounds[J]. Environmental Science & Technology, 51, 2574-2583(2017).

    [118] Felipe-Sotelo M, Gustems L, Hernàndez I et al. Investigation of geographical and temporal distribution of tropospheric ozone in Catalonia (North-East Spain) during the period 2000-2004 using multivariate data analysis methods[J]. Atmospheric Environment, 40, 7421-7436(2006).

    [119] Xue T, Zheng Y X, Geng G N et al. Estimating spatiotemporal variation in ambient ozone exposure during 2013–2017 using a data-fusion model[J]. Environmental Science & Technology, 54, 14877-14888(2020).

    [120] Brauers T, Hausmann M, Bister A et al. OH radicals in the boundary layer of the Atlantic Ocean: 1. Measurements by long-path laser absorption spectroscopy[J]. Journal of Geophysical Research: Atmospheres, 106, 7399-7414(2001).

    [121] Tan D, Faloona I, Simpas J B et al. HOx budgets in a deciduous forest: results from the PROPHET summer 1998 campaign[J]. Journal of Geophysical Research: Atmospheres, 106, 24407-24427(2001).

    [122] Lelieveld J, Butler T M, Crowley J N et al. Atmospheric oxidation capacity sustained by a tropical forest[J]. Nature, 452, 737-740(2008).

    [123] Whalley L K, Edwards P M, Furneaux K L et al. Quantifying the magnitude of a missing hydroxyl radical source in a tropical rainforest[J]. Atmospheric Chemistry and Physics, 11, 7223-7233(2011).

    [124] Ehhalt D H, Rohrer F. Dependence of the OH concentration on solar UV[J]. Journal of Geophysical Research: Atmospheres, 105, 3565-3571(2000).

    [125] Shirley T R, Brune W H, Ren X et al. Atmospheric oxidation in the Mexico city metropolitan area (MCMA) during April 2003[J]. Atmospheric Chemistry and Physics, 6, 2753-2765(2006).

    [126] Kanaya Y, Cao R Q, Akimoto H et al. Urban photochemistry in central Tokyo: 1. Observed and modeled OH and HO2 radical concentrations during the winter and summer of 2004[J]. Journal of Geophysical Research: Atmospheres, 112, D21312(2007).

    [127] Nelson B S, Stewart G J, Drysdale W S et al. In situ ozone production is highly sensitive to volatile organic compounds in Delhi, India[J]. Atmospheric Chemistry and Physics, 21, 13609-13630(2021).

    [128] Tan Z F, Lu K D, Dong H B et al. Explicit diagnosis of the local ozone production rate and the ozone-NOx-VOC sensitivities[J]. Science Bulletin, 63, 1067-1076(2018).

    [129] Tan Z F, Lu K D, Jiang M et al. Atmospheric oxidation capacity in Chinese megacities during photochemical polluted season: radical budget and secondary pollutants formation[J]. Atmospheric Chemistry and Physics, 1-23(2018).

    [130] Lu K D, Guo S, Tan Z F et al. Exploring atmospheric free-radical chemistry in China: the self-cleansing capacity and the formation of secondary air pollution[J]. National Science Review, 6, 579-594(2019).

    [131] Tang G, Wang Y, Li X et al. Spatial-temporal variations in surface ozone in Northern China as observed during 2009–2010 and possible implications for future air quality control strategies[J]. Atmospheric Chemistry and Physics, 12, 2757-2776(2012).

    [132] Yin Z C, Ma X Q. Meteorological conditions contributed to changes in dominant patterns of summer ozone pollution in Eastern China[J]. Environmental Research Letters, 15, 124062(2020).

    [133] Yin Z C, Wang H J, Li Y Y et al. Links of climate variability in Arctic Sea ice, Eurasian teleconnection pattern and summer surface ozone pollution in North China[J]. Atmospheric Chemistry and Physics, 19, 3857-3871(2019).

    [134] Yang Y, Liao H, Li J. Impacts of the East Asian summer monsoon on interannual variations of summertime surface-layer ozone concentrations over China[J]. Atmospheric Chemistry and Physics, 14, 6867-6879(2014).

    [135] Pu X, Wang T J, Huang X et al. Enhanced surface ozone during the heat wave of 2013 in Yangtze River Delta region, China[J]. Science of the Total Environment, 603/604, 807-816(2017).

    [136] Otero N, Sillmann J, Schnell J L et al. Synoptic and meteorological drivers of extreme ozone concentrations over Europe[J]. Environmental Research Letters, 11, 024005(2016).

    [137] Li K, Jacob D J, Liao H et al. Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 422-427(2019).

    [138] Wang M, Fang X, Wang M C et al. Analysis on variation characteristics of surface ozone and influence of meteorological elements in Hefei[J]. Journal of Atmospheric and Environmental Optics, 17, 205-212(2022).

    [139] Camalier L, Cox W, Dolwick P. The effects of meteorology on ozone in urban areas and their use in assessing ozone trends[J]. Atmospheric Environment, 41, 7127-7137(2007).

    [140] Chen Z Y, Li R Y, Chen D L et al. Understanding the causal influence of major meteorological factors on ground ozone concentrations across China[J]. Journal of Cleaner Production, 242, 118498(2020).

    [141] Jia L, Xu Y F. Effects of relative humidity on ozone and secondary organic aerosol formation from the photooxidation of benzene and ethylbenzene[J]. Aerosol Science and Technology, 48, 1-12(2014).

    [142] Yu S C. Fog geoengineering to abate local ozone pollution at ground level by enhancing air moisture[J]. Environmental Chemistry Letters, 17, 565-580(2019).

    [143] Zhao Z J, Wang Y X. Influence of the West Pacific subtropical high on surface ozone daily variability in summertime over Eastern China[J]. Atmospheric Environment, 170, 197-204(2017).

    [144] Sun R, Zhang H, Wang S B et al. Temporal and spatial distribution of ozone in typical cities of Yangtze River Delta region and its correlation with meteorological factors[J]. Journal of Atmospheric and Environmental Optics, 16, 483-494(2021).

    [145] Akritidis D, Zanis P, Pytharoulis I et al. A deep stratospheric intrusion event down to the earth’s surface of the megacity of Athens[J]. Meteorology and Atmospheric Physics, 109, 9-18(2010).

    [146] Knowland K E, Ott L E, Duncan B N et al. Stratospheric intrusion-influenced ozone air quality exceedances investigated in the NASA MERRA-2 reanalysis[J]. Geophysical Research Letters, 44, 10691-10701(2017).

    [147] Lefohn A S, Wernli H, Shadwick D et al. The importance of stratospheric-tropospheric transport in affecting surface ozone concentrations in the western and northern tier of the United States[J]. Atmospheric Environment, 45, 4845-4857(2011).

    [148] Lin M Y, Fiore A M, Cooper O R et al. Springtime high surface ozone events over the western United States: quantifying the role of stratospheric intrusions[J]. Journal of Geophysical Research: Atmospheres, 117, D00-22(2012).

    [149] Akritidis D, Katragkou E, Zanis P et al. A deep stratosphere-to-troposphere ozone transport event over Europe simulated in CAMS global and regional forecast systems: analysis and evaluation[J]. Atmospheric Chemistry and Physics, 18, 15515-15534(2018).

    [150] Holton J R, Haynes P H, McIntyre M E et al. Stratosphere-troposphere exchange[J]. Reviews of Geophysics, 33, 403-439(1995).

    [151] Krasauskas L, Ungermann J, Preusse P et al. 3-D tomographic observations of Rossby wave breaking over the North Atlantic during the WISE aircraft campaign in 2017[J]. Atmospheric Chemistry and Physics, 21, 10249-10272(2021).

    [152] Li D, Bian J C, Fan Q J. A deep stratospheric intrusion associated with an intense cut-off low event over East Asia[J]. Science China Earth Sciences, 58, 116-128(2015).

    [153] Salby M L, Callaghan P F. Influence of the Brewer-Dobson circulation on stratosphere-troposphere exchange[J]. Journal of Geophysical Research: Atmospheres, 111, D21106(2006).

    [154] Langford A O, Senff C J, Alvarez R J et al. An overview of the 2013 Las Vegas Ozone Study (LVOS): impact of stratospheric intrusions and long-range transport on surface air quality[J]. Atmospheric Environment, 109, 305-322(2015).

    [155] Liu N W. Seasonal-spatial variations of surface ozone over China and the influence of long range transport[D](2019).

    [156] Gao M, Li Q B, Mao Y H et al. Biomass burning impact on surface ozone in the western United States[EB/OL]. https://projects.iq.harvard.edu/files/acmg-geos/files/icg5-day1-mon_posters_gao_mei_1_mac.pdf

    [157] Tarasick D W, Carey-Smith T K, Hocking W K et al. Quantifying stratosphere-troposphere transport of ozone using balloon-borne ozonesondes, radar windprofilers and trajectory models[J]. Atmospheric Environment, 198, 496-509(2019).

    [158] Liu W, Hegglin M I, Checa-Garcia R et al. Stratospheric ozone depletion and tropospheric ozone increases drive Southern Ocean interior warming[J]. Nature Climate Change, 12, 365-372(2022).

    [159] Xia Y, Hu Y Y, Huang Y et al. Significant contribution of severe ozone loss to the Siberian-Arctic surface warming in spring 2020[J]. Geophysical Research Letters, 48, e2021GL092509(2021).

    [160] Xia Y, Wang Y W, Huang Y et al. Significant contribution of stratospheric water vapor to the poleward expansion of the Hadley circulation in autumn under greenhouse warming[J]. Geophysical Research Letters, 48, e2021GL094008(2021).

    [161] Wang M C, Fu Q. Stratosphere-troposphere exchange of air masses and ozone concentrations based on reanalyses and observations[J]. Journal of Geophysical Research: Atmospheres, 126, e2021JD035159(2021).

    Yulei Chi, Chuanfeng Zhao. Progress and Challenges of Ozone Satellite Remote Sensing Inversion[J]. Acta Optica Sinica, 2023, 43(18): 1899905
    Download Citation