• Nano-Micro Letters
  • Vol. 16, Issue 1, 167 (2024)
Lixue Gai1, Yahui Wang2、*, Pan Wan1, Shuping Yu1, Yongzheng Chen1, Xijiang Han1, Ping Xu1, and Yunchen Du1、**
Author Affiliations
  • 1MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
  • 2Anhui Provincial Laboratory of Advanced Laser Technology, College of Electronic Engineering, National University of Defense Technology, Hefei 230037, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01369-6 Cite this Article
    Lixue Gai, Yahui Wang, Pan Wan, Shuping Yu, Yongzheng Chen, Xijiang Han, Ping Xu, Yunchen Du. Compositional and Hollow Engineering of Silicon Carbide/Carbon Microspheres as High-Performance Microwave Absorbing Materials with Good Environmental Tolerance[J]. Nano-Micro Letters, 2024, 16(1): 167 Copy Citation Text show less
    References

    [1] Z. Cheng, R. Wang, Y. Cao, Z. Cai, Z. Zhang et al., Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/VO2 composite aerogel. Adv. Funct. Mater. 32, 2205160 (2022).

    [2] B. Zhao, Z. Yan, Y. Du, L. Rao, G. Chen et al., High-entropy enhanced microwave attenuation in titanate perovskites. Adv. Mater. 35, 2210243 (2023).

    [3] L. Gai, H. Zhao, F. Wang, P. Wang, Y. Liu et al., Advances in core—shell engineering of carbon-based composites for electromagnetic wave absorption. Nano Res. 15, 9410–9439 (2022).

    [4] J. Lin, J. Qiao, H. Tian, L. Li, W. Liu et al., Ultralight, hierarchical metal–organic framework derivative/graphene hybrid aerogel for electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 6, 177 (2023).

    [5] B. Zhao, Z. Bai, H. Lv, Z. Yan, Y. Du et al., Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 15, 79 (2023).

    [6] M. Qin, L. Zhang, H. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 9, 2105553 (2022).

    [7] J. Liu, J. Tao, L. Gao, X. He, B. Wei et al., Morphology-size synergy strategy of SiC@C nanoparticles towards lightweight and efficient microwave absorption. Chem. Eng. J. 433, 134484 (2022).

    [8] C. Wang, Y. Liu, Z. Jia, W. Zhao, G. Wu, Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 15, 13 (2022).

    [9] Y. Du, Z. Yan, W. You, Q. Men, G. Chen et al., Balancing MXene surface termination and interlayer spacing enables superior microwave absorption. Adv. Funct. Mater. 33, 2301449 (2023).

    [10] F. Wang, Y. Liu, H. Zhao, L. Cui, L. Gai et al., Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics. Chem. Eng. J. 450, 138160 (2022).

    [11] D. Liu, Y. Du, P. Xu, F. Wang, Y. Wang et al., Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. J. Mater. Chem. A 9, 5086–5096 (2021).

    [12] Y. Xiong, L. Xu, C. Yang, Q. Sun, X. Xu, Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption. J. Mater. Chem. A 8, 18863–18871 (2020).

    [13] L. Liu, N. He, T. Wu, P. Hu, G. Tong, Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties. Chem. Eng. J. 355, 103–108 (2019).

    [14] Z. Lou, Q. Wang, U.I. Kara, R.S. Mamtani, X. Zhou et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano-Micro Lett. 14, 11 (2021).

    [15] C. Zheng, M. Ning, Z. Zou, G. Lv, Q. Wu et al., Two birds with one stone: broadband electromagnetic wave absorption and anticorrosion performance in 2–18 GHz for Prussian blue analog derivatives aimed for practical applications. Small 19, 2208211 (2023).

    [16] S. Chen, W. Li, X. Li, W. Yang, One-dimensional SiC nanostructures: designed growth, properties, and applications. Prog. Mater. Sci. 104, 138–214 (2019).

    [17] B. Hu, L. Gai, Y. Liu, P. Wang, S. Yu et al., State-of-the-art in carbides/carbon composites for electromagnetic wave absorption. iScience 26, 107876 (2023).

    [18] Z. Cai, L. Su, H. Wang, M. Niu, H. Gao et al., Hydrophobic SiC@C nanowire foam with broad-band and mechanically controlled electromagnetic wave absorption. ACS Appl. Mater. Interfaces 12, 8555–8562 (2020).

    [19] Y. Du, Advances in carbon-based microwave absorbing materials. Materials 15, 1359 (2022).

    [20] Y. Cheng, L. Hu, K. Zhang, J. Fan, Facile synthesis of hollow SiC/C nanospheres for high-performance electromagnetic wave absorption. Carbon 215, 118391 (2023).

    [21] B. Huang, J. Yue, B. Fan, Y. Liu, X. Huang, Vertical carbon nanotubes arrays with controlled morphology on silicon carbide fibers for electromagnetic wave absorption. Ceram. Int. 48, 19375–19381 (2022).

    [22] Z. Wu, H.-W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, 2107538 (2022).

    [23] C. Zhang, Z. Wu, C. Xu, B. Yang, L. Wang et al., Hierarchical Ti3C2Tx MXene/carbon nanotubes hollow microsphere with confined magnetic nanospheres for broadband microwave absorption. Small 18, 2104380 (2022).

    [24] Y. Hou, H. Yuan, X. Qu, H. Chen, L. Li, Synthesis and high-performance electromagnetic wave absorption of SiC@C composites. Mater. Lett. 209, 90–93 (2017).

    [25] H. Xu, G. Zhang, Y. Wang, M. Ning, B. Ouyang et al., Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 14, 102 (2022).

    [26] H. Zhao, F. Wang, L. Cui, X. Xu, X. Han et al., Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: a review. Nano-Micro Lett. 13, 208 (2021).

    [27] H. Zhao, X. Xu, Y. Wang, D. Fan, D. Liu et al., Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 16, 2003407 (2020).

    [28] X.-F. Zhang, Z. Chen, Y. Feng, J. Qiu, J. Yao, Low-temperature transformation of C/SiO2 nanocomposites to β-SiC with high surface area. ACS Sustainable Chem. Eng. 6, 1068–1073 (2018).

    [29] Y. Du, J. Wang, C. Cui, X. Liu, X. Wang et al., Pure carbon microwave absorbers from anion-exchange resin pyrolysis. Synth. Met. 160, 2191–2196 (2010).

    [30] J.-P. Chen, Y.-F. Du, Z.-F. Wang, L.-L. Liang, H. Jia et al., Anchoring of SiC whiskers on the hollow carbon microspheres inducing interfacial polarization to promote electromagnetic wave attenuation capability. Carbon 175, 11–19 (2021).

    [31] M. Zhang, H. Lin, S. Ding, T. Wang, Z. Li et al., Net-like SiC@C coaxial nanocable towards superior lightweight and broadband microwave absorber. Compos. Part B Eng. 179, 107525 (2019).

    [32] F. Wang, Y. Liu, R. Feng, X. Wang, X. Han et al., A “win–win” strategy to modify Co/C foam with carbon microspheres for enhanced dielectric loss and microwave absorption characteristics. Small 19, 2303597 (2023).

    [33] N. Wang, W. Ma, Z. Ren, Y. Du, P. Xu et al., Prussian blue analogues derived porous nitrogen-doped carbon microspheres as high-performance metal-free peroxymonosulfate activators for non-radical-dominated degradation of organic pollutants. J. Mater. Chem. A 6, 884–895 (2018).

    [34] Y. Du, T. Liu, B. Yu, H. Gao, P. Xu et al., The electromagnetic properties and microwave absorption of mesoporous carbon. Mater. Chem. Phys. 135, 884–891 (2012).

    [35] S. Hou, Y. Wang, F. Gao, H. Yang, F. Jin et al., A novel approach to electromagnetic wave absorbing material design: Utilizing nano-antenna arrays for efficient electromagnetic wave capture. Chem. Eng. J. 471, 144779 (2023).

    [36] H. Wang, Q. An, Z. Xiao, Y. Tong, L. Guo et al., Marine polysaccharide-based electromagnetic absorbing/shielding materials: design principles, structure, and properties. J. Mater. Chem. A 10, 17023–17052 (2022).

    [37] L. Gai, Y. Zhao, G. Song, Q. An, Z. Xiao et al., Construction of core-shell PPy@MoS2 with nanotube-like heterostructures for electromagnetic wave absorption: assembly and enhanced mechanism. Compos. Part A Appl. Sci. Manuf. 136, 105965 (2020).

    [38] M. Han, X. Yin, Z. Hou, C. Song, X. Li et al., Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 9, 11803–11810 (2017).

    [39] Y. Jiang, Y. Chen, Y. J. Liu, G. X. Sui, Lightweight spongy bone-like graphene@SiC aerogel composites for high-performance microwave absorption. Chem. Eng. J. 337, 522–531 (2018).

    [40] J. Qian, B. Du, M. Cai, C. He, X. Wang et al., Preparation of SiC nanowire/carbon fiber composites with enhanced electromagnetic wave absorption performance. Adv. Eng. Mater. 23, 2100434 (2021).

    [41] S. Xiao, H. Mei, D. Han, K.G. Dassios, L. Cheng, Ultralight lamellar amorphous carbon foam nanostructured by SiC nanowires for tunable electromagnetic wave absorption. Carbon 122, 718–725 (2017).

    [42] S. Xie, G. Q. Jin, S. Meng, Y. W. Wang, Y. Qin et al., Microwave absorption properties of in situ grown CNTs/SiC composites. J. Alloys Compd. 520, 295–300 (2012).

    [43] X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang et al., Novel three-dimensional SiC/melamine-derived carbon foam-reinforced SiO2 aerogel composite with low dielectric loss and high impedance matching ratio. ACS Sustain. Chem. Eng. 7, 2774–2783 (2019).

    [44] K. Zhao, F. Ye, L. Cheng, R. Liu, J. Liang et al., Synthesis of embedded ZrC-SiC-C microspheres via carbothermal reduction for thermal stability and electromagnetic wave absorption. Appl. Surf. Sci. 591, 153105 (2022).

    [45] B. Mao, X. Xia, R. Qin, D. Xu, X. Wang et al., Synthesis and microwave absorption properties of multilayer SiC/C foam with alternating distribution of C and SiC. J. Alloys Compd. 879, 160440 (2021).

    [46] Z. Hou, J. Xue, H. Wei, X. Fan, F. Ye et al., Tailorable microwave absorption properties of RGO/SiC/CNT nanocomposites with 3D hierarchical structure. Ceram. Int. 46, 18160–18167 (2020).

    [47] S. Singh, A. Kumar, D. Singh, Enhanced microwave absorption performance of SWCNT/SiC composites. J. Electron. Mater. 49, 7279–7291 (2020).

    [48] R. Wu, Z. Yang, M. Fu, K. Zhou, In-situ growth of SiC nanowire arrays on carbon fibers and their microwave absorption properties. J. Alloys Compd. 687, 833–838 (2016).

    [49] X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang et al., Porous SiC/melamine-derived carbon foam frameworks with excellent electromagnetic wave absorbing capacity. J. Adv. Ceram. 8, 479–488 (2019).

    [50] X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang et al., Synthesis and microwave absorption properties of novel reticulation SiC/Porous melamine-derived carbon foam. J. Alloys Compd. 791, 883–891 (2019).

    [51] Y. Zhang, J. Chen, D. Yan, S. Wang, G. Li et al., Conversion of silicon carbide fibers to continuous graphene fibers by vacuum annealing. Carbon 182, 435–444 (2021).

    [52] Y. Zhang, Y. Zhao, Q. Chen, Y. Hou, Q. Zhang et al., Flexible SiC-CNTs hybrid fiber mats for tunable and broadband microwave absorption. Ceram. Int. 47, 8123–8132 (2021).

    [53] P. Wang, L. Gai, B. Hu, Y. Liu, F. Wang et al., Topological MOFs deformation for the direct preparation of electromagnetic functionalized Ni/C aerogels with good hydrophobicity and thermal insulation. Carbon 212, 118132 (2023).

    [54] L. Cui, Y. Wang, X. Han, P. Xu, F. Wang et al., Phenolic resin reinforcement: a new strategy for hollow NiCo@C microboxes against electromagnetic pollution. Carbon 174, 673–682 (2021).

    [55] D. Liu, R. Qiang, Y. Du, Y. Wang, C. Tian et al., Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption. J. Colloid Interface Sci. 514, 10–20 (2018).

    [56] Z.N. Wing, B. Wang, J.W. Halloran, Permittivity of porous titanate dielectrics. J. Am. Ceram. Soc. 89, 3696–3700 (2006).

    [57] D. Liu, Y. Du, F. Wang, Y. Wang, L. Cui et al., MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 157, 478–485 (2020).

    [58] T. Zhao, Z. Jia, Y. Zhang, G. Wu, Multiphase molybdenum carbide doped carbon hollow sphere engineering: the superiority of unique double-shell structure in microwave absorption. Small 19, e2206323 (2023).

    [59] R. Qiang, Y. Du, Y. Wang, N. Wang, C. Tian et al., Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption. Carbon 98, 599–606 (2016).

    [60] Z. Gao, Z. Ma, D. Lan, Z. Zhao, L. Zhang et al., Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption. Adv. Funct. Mater. 32, 2112294 (2022).

    [61] K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I: alternating current characteristics. J. Chem. Phys. 9, 341–351 (1941).

    [62] B. Zhao, Y. Du, H. Lv, Z. Yan, H. Jian et al., Liquid-metal-assisted programmed galvanic engineering of core–shell nanohybrids for microwave absorption. Adv. Funct. Mater. 33, 2302172 (2023).

    [63] Y. Liu, C. Tian, F. Wang, B. Hu, P. Xu et al., Dual-pathway optimization on microwave absorption characteristics of core–shell Fe3O4@C microcapsules: composition regulation on magnetic core and MoS2 nanosheets growth on carbon shell. Chem. Eng. J. 461, 141867 (2023).

    [64] D. Liu, Y. Du, P. Xu, N. Liu, Y. Wang et al., Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. J. Mater. Chem. C 7, 5037–5046 (2019).

    Lixue Gai, Yahui Wang, Pan Wan, Shuping Yu, Yongzheng Chen, Xijiang Han, Ping Xu, Yunchen Du. Compositional and Hollow Engineering of Silicon Carbide/Carbon Microspheres as High-Performance Microwave Absorbing Materials with Good Environmental Tolerance[J]. Nano-Micro Letters, 2024, 16(1): 167
    Download Citation