• Acta Optica Sinica
  • Vol. 43, Issue 16, 1623024 (2023)
Chuyi Zhong1、2, Mingzhao Ouyang1、2、*, Yan Zhou3, Hang Ren1、2, Yuegang Fu1、2, Xu Han1、2, and Jinshuang Wu1、2
Author Affiliations
  • 1Key Laboratory of Optoelectric Measurement and Optical Information Transmission Technology, Ministry of Education, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • 2School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • 3Tianjin Jinhang Institute of Technical Physics, Tianjin 300309, China
  • show less
    DOI: 10.3788/AOS230694 Cite this Article Set citation alerts
    Chuyi Zhong, Mingzhao Ouyang, Yan Zhou, Hang Ren, Yuegang Fu, Xu Han, Jinshuang Wu. Surface of Mid-Infrared Composite Grid Antireflection Micro-Nanostructure[J]. Acta Optica Sinica, 2023, 43(16): 1623024 Copy Citation Text show less
    References

    [1] Gao Z L, Lin G L, Chen Y C et al. Moth-eye nanostructure PDMS films for reducing reflection and retaining flexibility in ultra-thin c-Si solar cells[J]. Solar Energy, 205, 275-281(2020).

    [2] Shen X Q, Wang S Y, Zhou H et al. Improving thin film solar cells performance via designing moth-eye-like nanostructure arrays[J]. Results in Physics, 20, 103713(2021).

    [3] Daglar B, Khudiyev T, Demirel G B et al. Soft biomimetic tapered nanostructures for large-area antireflective surfaces and SERS sensing[J]. Journal of Materials Chemistry C, 1, 7842-7848(2013).

    [4] Rosfjord K M, Yang J K W, Dauler E A et al. Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating[J]. Optics Express, 14, 527-534(2006).

    [5] Tan G J, Lee J H, Lan Y H et al. Broadband antireflection film with moth-eye-like structure for flexible display applications[J]. Optica, 4, 678-683(2017).

    [6] Yue W J, Gao S, Lee S S et al. Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors[J]. Laser & Photonics Reviews, 11, 1600285(2017).

    [7] Jang H J, Kim Y J, Yoo Y J et al. Double-sided anti-reflection nanostructures on optical convex lenses for imaging applications[J]. Coatings, 9, 404(2019).

    [8] Nakamura Y, Toma M, Kajikawa K. A visible and near-infrared broadband light absorber of cone-shaped metallic cavities[J]. Applied Physics Express, 13, 062001(2020).

    [9] Diao Z, Kraus M, Brunner R et al. Nanostructured stealth surfaces for visible and near-infrared light[J]. Nano Letters, 16, 6610-6616(2016).

    [10] Lan J, Chen J S, Xiao Z G et al. Simulation of broadband anti-reflective and bud-shaped moth-eye structure[J]. Acta Optica Sinica, 41, 1416001(2021).

    [11] Dong T T, Fu Y G, Chen C et al. Design and manufacture of columned antireflective periodic microstructures on the surface of Si substrate[J]. Infrared and Laser Engineering, 45, 0622002(2016).

    [12] Wu J S, Ouyang M Z, Zhao Y et al. Mushroom-structured silicon metasurface for broadband superabsorption from UV to NIR[J]. Optical Materials, 121, 111504(2021).

    [13] Dong T T, Fu Y G, Chen C et al. Study on bionic moth-eye antireflective cylindrical microstructure on germanium substrate[J]. Acta Optica Sinica, 36, 0522004(2016).

    [14] Cheng H J, Dong M A, Tan Q W et al. Broadband mid-IR antireflective Reuleaux-triangle-shaped hole array on germanium[J]. Chinese Optics Letters, 17, 122401(2019).

    [15] Ma Z Y, Ouyang M Z, Fu Y G et al. Anti-reflection surface of mid-infrared bionic composite micro-nano structure[J]. Acta Optica Sinica, 42, 1031001(2022).

    [16] Lin H. Research on moth eye antireflective metasurface in multiple wavelengths of visible, near-infrared and mid-infrared[D](2019).

    [17] Ducros C, Brodu A, Lorin G et al. Optical performances of antireflective moth-eye structures. Comparison with standard vacuum antireflection coatings for application to outdoor lighting LEDs[J]. Surface and Coatings Technology, 379, 125044(2019).

    [18] Yoo Y J, Kim Y J, Kim S Y et al. Mechanically robust antireflective moth-eye structures with a tailored coating of dielectric materials[J]. Optical Materials Express, 9, 4178-4186(2019).

    [19] Zhang H Y, Cui Y, Sun Y et al. Fabrication of environmentally adaptive mid-infrared broadband antireflection components[J]. Chinese Journal of Lasers, 47, 0301006(2020).

    [20] Kondrashov V, Rühe J. Microcones and nanograss: toward mechanically robust superhydrophobic surfaces[J]. Langmuir, 30, 4342-4350(2014).

    [21] Lu Y, Sathasivam S, Song J L et al. Repellent materials. Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science, 347, 1132-1135(2015).

    [22] Zimmermann J, Reifler F A, Fortunato G et al. A simple, one-step approach to durable and robust superhydrophobic textiles[J]. Advanced Functional Materials, 18, 3662-3669(2008).

    [23] Zhang Y F, Ge D T, Yang S. Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness[J]. Journal of Colloid and Interface Science, 423, 101-107(2014).

    [24] Peng C Y, Chen Z Y, Tiwari M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nature Materials, 17, 355-360(2018).

    [25] Jin H, Tian X L, Ikkala O et al. Preservation of superhydrophobic and superoleophobic properties upon wear damage[J]. ACS Applied Materials & Interfaces, 5, 485-488(2013).

    [26] Deng X, Mammen L, Butt H J et al. Candle soot as a template for a transparent robust superamphiphobic coating[J]. Science, 335, 67-70(2012).

    [27] Zhang W B, Xiang T H, Liu F et al. Facile design and fabrication of superwetting surfaces with excellent wear-resistance[J]. ACS Applied Materials & Interfaces, 9, 15776-15784(2017).

    Chuyi Zhong, Mingzhao Ouyang, Yan Zhou, Hang Ren, Yuegang Fu, Xu Han, Jinshuang Wu. Surface of Mid-Infrared Composite Grid Antireflection Micro-Nanostructure[J]. Acta Optica Sinica, 2023, 43(16): 1623024
    Download Citation