• Photonics Research
  • Vol. 12, Issue 5, 947 (2024)
Duc Le1、*, Anni Ranta-Lassila1, Teemu Sipola1, Mikko Karppinen1, Jarno Petäjä1, Minna Kehusmaa1, Sanna Aikio1, Tian-Long Guo2, Matthieu Roussey2, Jussi Hiltunen1, and Alexey Popov1
Author Affiliations
  • 1VTT Technical Research Centre of Finland, 90570 Oulu, Finland
  • 2Department of Physics and Mathematics, University of Eastern Finland, FI-80101 Joensuu, Finland
  • show less
    DOI: 10.1364/PRJ.517895 Cite this Article Set citation alerts
    Duc Le, Anni Ranta-Lassila, Teemu Sipola, Mikko Karppinen, Jarno Petäjä, Minna Kehusmaa, Sanna Aikio, Tian-Long Guo, Matthieu Roussey, Jussi Hiltunen, Alexey Popov. High-performance portable grating-based surface plasmon resonance sensor using a tunable laser at normal incidence[J]. Photonics Research, 2024, 12(5): 947 Copy Citation Text show less
    References

    [1] M. Piliarik, L. Párová, J. Homola. High-throughput SPR sensor for food safety. Biosens. Bioelectron., 24, 1399-1404(2009).

    [2] X. Zhang, S. Tsuji, H. Kitaoka. Simultaneous detection of Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes at a very low level using simultaneous enrichment broth and multichannel SPR biosensor. J. Food Sci., 82, 2357-2363(2017).

    [3] Y. Xia, P. Zhang, H. Yuan. Sequential sandwich immunoassay for simultaneous detection in trace samples using single-channel surface plasmon resonance. Analyst, 144, 5700-5705(2019).

    [4] J. Zhou, Q. Qi, C. Wang. Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosens. Bioelectron., 142, 111449(2019).

    [5] S. Das, R. Devireddy, M. R. Gartia. Surface plasmon resonance (SPR) sensor for cancer biomarker detection. Biosensors, 13, 396(2023).

    [6] L. Liu, N. Xia, J. Wang. Potential applications of SPR in early diagnosis and progression of Alzheimer’s disease. RSC Adv., 2, 2200-2204(2012).

    [7] A. A. I. Sina, R. Vaidyanathan, A. Wuethrich. Label-free detection of exosomes using a surface plasmon resonance biosensor. Anal. Bioanal. Chem., 411, 1311-1318(2019).

    [8] T. Riedel, C. Rodriguez-Emmenegger, A. Santos Pereira. Diagnosis of Epstein–Barr virus infection in clinical serum samples by an SPR biosensor assay. Biosens. Bioelectron., 55, 278-284(2014).

    [9] J. W. Chung, S. D. Kim, R. Bernhardt. Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV). Sens. Actuators B, 111–112, 416-422(2005).

    [10] A. J. Steckl, P. Ray. Stress biomarkers in biological fluids and their point-of-use detection. ACS Sens., 3, 2025-2044(2018).

    [11] M. G. Manera, G. Montagna, E. Ferreiro-Vila. Enhanced gas sensing performance of TiO2 functionalized magneto-optical SPR sensors. J. Mater. Chem., 21, 16049-16056(2011).

    [12] A. N. Naimushin, S. D. Soelberg, D. U. Bartholomew. A portable surface plasmon resonance (SPR) sensor system with temperature regulation. Sens. Actuators B, 96, 253-260(2003).

    [13] E. S. Forzani, H. Zhang, W. Chen. Detection of heavy metal ions in drinking water using a high-resolution differential surface plasmon resonance sensor. Environ. Sci. Technol., 39, 1257-1262(2005).

    [14] J. Homola, S. S. Yee, G. Gauglitz. Surface plasmon resonance sensors: review. Sens. Actuators B, 54, 3-15(1999).

    [15] J. Homola. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev., 108, 462-493(2008).

    [16] J. Homola, I. Koudela, S. S. Yee. Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sens. Actuators B, 54, 16-24(1999).

    [17] J. F. Masson. Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sens., 2, 16-30(2017).

    [18] P. Hausler, C. Roth, T. Vitzthumecker. Miniaturized surface plasmon resonance based sensor systems-opportunities and challenges. Photonics and Laser Technology, 223, 169-195(2019).

    [19] A. Santos, M. J. Deen, L. F. Marsal. Low-cost fabrication technologies for nanostructures: state-of-the-art and potential. Nanotechnology, 26, 042001(2015).

    [20] X. Dou, P.-Y. Chung, B. M. Phillips. High surface plasmon resonance sensitivity enabled by optical disks. Opt. Lett., 37, 3681-3683(2012).

    [21] J. Breault-Turcot, J. F. Masson. Nanostructured substrates for portable and miniature SPR biosensors. Anal. Bioanal. Chem., 403, 1477-1484(2012).

    [22] M. Vala, K. Chadt, M. Piliarik. High-performance compact SPR sensor for multi-analyte sensing. Sens. Actuators B, 148, 544-549(2010).

    [23] D. Kotlarek, M. Vorobii, W. Ogieglo. Compact grating-coupled biosensor for the analysis of thrombin. ACS Sens., 4, 2109-2116(2019).

    [24] H. Guner, E. Ozgur, G. Kokturk. A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. Sens. Actuators B, 239, 571-577(2017).

    [25] T. Chu, N. Fujioka, M. Ishizaka. Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic wire waveguide micro-ring resonators. Opt. Express, 17, 14063-14068(2009).

    [26] R. Patel, J. Nee, D. Tsou. High-power, narrow-linewidth, miniaturized silicon photonic tunable laser with accurate frequency control. J. Lightwave Technol., 38, 4205-4212(2020).

    [27] D. Vermeulen, N. Singh, E. Timurdogan. Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform. Opt. Express, 26, 16200-16211(2018).

    [28] C. Yang, L. Liang, L. Qin. Advances in silicon-based, integrated tunable semiconductor lasers. Nanophotonics, 12, 197-217(2023).

    [29] L. A. Coldren, P. A. Verrinder, J. Klamkin. A review of photonic systems-on-chip enabled by widely tunable lasers. IEEE J. Quantum Electron., 58, 6300110(2022).

    [30] S. Long, J. Cao, Y. Wang. Grating coupled SPR sensors using off the shelf compact discs and sensitivity dependence on grating period. Sens. Actuators Rep., 2, 100016(2020).

    [31] A. Hemmi, T. Usui, A. Moto. A surface plasmon resonance sensor on a compact disk-type microfluidic device. J. Sep. Sci., 34, 2913-2919(2011).

    [32] H. Altug, S. H. Oh, S. A. Maier. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol., 17, 5-16(2022).

    [33] B. D. Thackray, V. G. Kravets, F. Schedin. Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments. ACS Photon., 1, 1116-1126(2014).

    [34] K. Hun Yoon, M. L. Shuler, S. June Kim. Design optimization of nano-grating surface plasmon resonance sensors. Opt. Express, 14, 4842-4849(2006).

    [35] S. Nair, C. Escobedo, R. G. Sabat. Crossed surface relief gratings as nanoplasmonic biosensors. ACS Sens., 2, 379-385(2017).

    [36] X. Dou, P. Y. Chung, P. Jiang. Surface plasmon resonance and surface-enhanced Raman scattering sensing enabled by digital versatile discs. Appl. Phys. Lett., 100, 041116(2012).

    [37] I. Watad, I. Abdulhalim. Spectropolarimetric surface plasmon resonance sensor and the selection of the best polarimetric function. IEEE J. Sel. Top. Quantum Electron., 23, 89-97(2017).

    [38] J. Cao, Y. Sun, Y. Kong. The sensitivity of grating-based SPR sensors with wavelength interrogation. Sensors, 19, 405(2019).

    [39] A. V. Kabashin, P. Evans, S. Pastkovsky. Plasmonic nanorod metamaterials for biosensing. Nat. Mater., 8, 867-871(2009).

    [40] J. R. Sambles, I. R. Hooper. Surface plasmon polaritons on narrow-ridged short-pitch metal gratings in the conical mount. J. Opt. Soc. Am., 20, 836-843(2003).

    [41] N. Díaz-Herrera, A. González-Cano, D. Viegas. Refractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibres operating in the 1.5 μm region. Sens. Actuators B, 146, 195-198(2010).

    [42] M. Wang, J. Hiltunen, S. Uusitalo. Fabrication of optical inverted-rib waveguides using UV-imprinting. Microelectron. Eng., 88, 175-178(2011).

    [43] M. Beck, M. Graczyk, I. Maximov. Improving stamps for 10 nm level wafer scale nanoimprint lithography. Microelectron. Eng., 61–62, 441-448(2002).

    [44] S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania. Phonon-polaritonics: enabling powerful capabilities for infrared photonics. Nanophotonics, 8, 2129-2175(2019).

    [45] K. Tawa, T. Nakayama, K. Kintaka. Optimal structure of a plasmonic chip for sensitive bio-detection with the grating-coupled surface plasmon-field enhanced fluorescence (GC-SPF). Materials, 10, 1063(2017).

    [46] G. A. López-Muñoz, M. C. Estevez, E. C. Peláez-Gutierrez. A label-free nanostructured plasmonic biosensor based on Blu-ray discs with integrated microfluidics for sensitive biodetection. Biosens. Bioelectron., 96, 260-267(2017).

    [47] Y. Sun, S. Sun, M. Wu. Refractive index sensing using the metal layer in DVD-R discs. RSC Adv., 8, 27423-27428(2018).

    [48] K. V. Sreekanth, Y. Alapan, M. Elkabbash. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater., 15, 621-627(2016).

    [49] A. Shrivastava, V. Gupta. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci., 2, 21-25(2011).

    [50] C. Y. Tan, Y. X. Huang. Dependence of refractive index on concentration and temperature in electrolyte solution, polar solution, nonpolar solution, and protein solution. J. Chem. Eng. Data, 60, 2827-2833(2015).

    Duc Le, Anni Ranta-Lassila, Teemu Sipola, Mikko Karppinen, Jarno Petäjä, Minna Kehusmaa, Sanna Aikio, Tian-Long Guo, Matthieu Roussey, Jussi Hiltunen, Alexey Popov. High-performance portable grating-based surface plasmon resonance sensor using a tunable laser at normal incidence[J]. Photonics Research, 2024, 12(5): 947
    Download Citation