- Photonics Research
- Vol. 10, Issue 4, 1039 (2022)
Abstract
1. INTRODUCTION
Since more than 20% of global electric energy is consumed by lighting every year, it is quite urgent to develop efficient lighting sources to save massive energy. White light-emitting diodes (WLEDs), which are regarded as bright and solid-state lighting sources, have aroused wide attention due to their high luminous efficiency, long operating lifetime, and ecofriendly nature [1–5]. The performance of photoluminescence and electroluminescence WLEDs, in which the white light originates from optical pump and electrical driving, is dominated by the emitters and luminescent materials [6]. In conventional WLEDs, the white emission derives from rare-earth phosphors and blue/violet InGaN/GaN LED chips. Despite the fascinating characteristics of WLEDs based on rare-earth phosphors, their further development and commercialization still suffer from the supply shortage issues of the rare-earth elements as well as the complex and high-temperature preparation processes of phosphors with energy consumption. Apart from rare-earth phosphors, organic and II-VI-/III-V group semiconductors could also be used as emitters in WLEDs; however, the instability issue of organic semiconductors and the sophisticated mass production of II-VI-/III-V semiconductors have limited their studies [7,8]. Thus, it is of great interest to explore emitting materials with feasible preparation, efficient luminescence, and excellent stability for the next-generation WLEDs applications.
Owing to the high photoluminescence quantum yield (PLQY), tunable photoluminescence (PL) across the entire visible region, and being solution-processable, inorganic halide perovskites (IHPs) have been selected over other efficient emitters in optoelectronic applications [9–11]. Moreover, compared to hybrid organic perovskites with inorganic groups, such as MA, FA, and PEA, IHPs containing stable , , and exhibit enhanced stability against heat, humidity, and UV irradiation. In addition, their prominent advantages, including structural stability and processability, inspire researchers to focus on their development and applications. The Goldschmit’s tolerance factor () that depends on the ionic radius is used to estimate the structural stability of perovskites [12,13]. Thus, the organic groups with a large ionic radius indicate large values in hybrid perovskites, resulting in the instable structures, while the , , and ions with a suitable radius facilitate the stabilization of the crystal structures of inorganic perovskites, leading to the improvement of structural stability. Apart from structural stability, owing to the high boiling point of inorganic ions, the high-quality IHPs can be synthesized by solution methods at increasing temperature. These properties endow IHPs with great potential for lighting, with encouraging research progresses in IHP-based lighting being witnessed in recent years. However, the practical applications of WLEDs based on inorganic lead halide perovskites () are still hindered by their intrinsic instability and the relatively low PLQY of red and blue emission. To obviate these problems, beneficial strategies, including coating, embedding, morphological optimization, and surface-ligand modification, are exploited to further enhance the stability and optical properties of IHPs [14–16]. In addition, it is essential for state-of-the-art WLEDs to possess broad spectra covering the entire visible region, but the narrow emission spectra of are identified as a major bottleneck in the lighting application. The expanded width of the emission spectra of WLEDs can be accompanied by combining with other emitters with complementary emissive spectra and incorporating dopants into IHPs to introduce novel emission peaks [17,18]. Moreover, benefiting from the fascinating characteristics of broad emission and nontoxicity, inorganic lead-free halide perovskites have emerged as good candidates for emitters in WLEDs [19–22]. Therefore, among the emitters used in high-performance WLEDs, the IHPs stand out as the promising still-up-and-coming choices.
In this review, as shown in Fig. 1, we first provide a comprehensive overview of the white light in WLEDs and optical properties of IHPs, with the key factors to evaluate the performance of WLEDs being also summarized. Then, we classify the WLEDs into two types according to their emitters, including WLEDs based on both inorganic lead and lead-free halide perovskites, respectively. The optimum strategies of both types of IHPs for photoluminescence and electroluminescence WLEDs, including coating, embedding, morphological optimization, and surface-ligand modification, are introduced and discussed synthetically. Especially, the device structures of electroluminescence WLEDs are analyzed to highlight the effects of carrier transport layers on the performance of lighting. Moreover, the luminescent mechanisms and properties of single-component white emission derived from inorganic lead-free halide perovskites with broad emission are presented. In addition to the lighting applications, with unique merits of high luminosity and low energy consumption, WLEDs based on IHPs are also considered as alternative candidates for visible light communication applications. Thus, the advances achieved in the visible light communication are proposed to demonstrate the prominent potential of WLEDs. Finally, further challenges toward enhanced performance and commercialization are included with discussions on the future perspectives.
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
Figure 1.Summary of the review, which includes materials, photoluminescence, and electroluminescence white emission and application of inorganic halide perovskites.
2. WLEDs AND IHPs
As efficient lighting sources, WLEDs exhibit numerous advantages (e.g., low energy consumption, long duration, and ecofriendliness), emerging as the mainstream in the fields of lighting and displays. According to the pumped modes, WLEDs can be classified into photoluminescence and electroluminescence ones. For both types of WLEDs, the efficient white-emitting properties, which are evaluated by color rendering index (CRI), correlated color temperature (CCT), and luminous efficiency, facilitate lighting applications. The CRI is used to measure the rendering ability of a light source to reveal colors of objects in comparison to the sunlight; CCT is defined as the temperature of an ideal black-body radiator that radiates the light of a given lighting source. According to the CCT values of the white emission, the WLEDs can be classified into warm (), neutral (), and cold (over 6500 K) ones [8,13,23]. However, the cold white light with the dominant blue and ultraviolet components is found to harm the naked eyes of humans; as a result, the WLEDs with warm and neutral white light are recognized as good candidates of lighting and display sources. Therefore, it is essential for an efficient WLED to possess a high CRI (near 100), a proper CCT (), and a high luminous efficiency [6,24]. In terms of efficient WLEDs, their white emission originates from the combination of different colors, including the mix of yellow and blue light, as well as tricolor (red, green, and blue) light. For photoluminescence WLEDs, the yellow and tricolor components are usually derived from emitting materials, which are pumped by blue or ultraviolet (UV) chips [6]. Similarly, the electroluminescence WLEDs are accompanied by fabricating electrically driven devices with emitting and carrier transport layers [25]. Besides, the novel white emitters with broad luminescent spectra are proposed to implement WLEDs, which are of great interest for single-component white light [8,13]. As described above, the performance of WLEDs considerably depends on the optical properties of luminescent materials. Among all the bright emitters, IHPs have shown distinct advantages due to their stable perovskite-type structures and prominent optoelectronic properties.
Owing to the fascinating properties, such as high PLQYs, tunable emission, and excellent absorption, (X Cl, Br, I), one of the typical known IHPs, has emerged as the dream materials for optoelectronic applications [26,27]. Besides, the studies of IHP nanocrystals have also brought new opportunities and challenges to exploit quantum confinement effects. Thus, IHP nanocrystals with size-tunable emission and high PLQYs have gained great interest in LED-related applications. Apart from IHP nanocrystals, IHP single crystals with a low defect density and controllable surface morphologies can facilitate the radiative recombination of excitons, enhancing their luminescent efficiency [28–30]. Moreover, perovskites feature three-dimensional structures with corner-sharing lead-halide octahedra isolated by ions, rendering them chemically stable. The optical properties of are attributed to the basic units of lead-halide octahedra. The conduction band minimum (CBM) and valence band maximum (VBM) of those IHPs originate from the antibonding orbits of lead and halide ions, in which the defect levels locate in bands [31]. It endows IHPs with outstanding abilities to tolerate defects and merits of efficient luminescence [32]. Besides, benefiting from the dependence of CBM and VBM energy levels on orbits of halide ions, the tunability of the bandgap of IHPs can be achieved through the change of halide components, leading to tunable emission. More importantly, the solution processability of IHPs without the requirement of a high temperature and a high vacuum makes it possible to deposit them over a large area while maintaining a low cost. With the abovementioned striking properties, IHPs are considered as promising candidates for efficient WLEDs in lighting applications.
3. PHOTOLUMINESCENCE WLEDs OF IHPs
A. Photoluminescence WLEDs of
Owing to their feasible fabrication and high luminous efficiency, photoluminescence WLEDs are popular and commercialized in applications of lighting especially in recent years. Typically, photoluminescence WLEDs based on IHPs are fabricated from IHP emitters and blue/UV chips. However, have a small full width at half-maximum (FWHM) of emissive spectra, making them unable to achieve high-performance WLEDs with broadband emissions using a single-component . To overcome such an issue in WLEDs, other emitters with complementary spectra should be added to broaden the emission [33–41]. Benefiting from the tunable emission of , with different halides could serve as emitters together to form broad emission [42–44]. Among various methods to prepare nanocrystals, a hot-injection method evolved from the preparation of CdSe and PbS semiconductor nanocrystals is promoted [45–47]. The reaction temperature and solvent polarity during the hot-injection process were previously reported to affect the sizes and morphologies of nanocrystals [48,49]. It is found that high temperature and a low-polarity solvent favor nucleation and growth of nanocrystals, resulting in nanocrystals with uniform morphologies and high PLQYs [50]. Besides, as shown in Figs. 2(a) and 2(b), the nanocrystals with different sizes and halides show tunable luminescent spectra from 410 to 700 nm, covering the entire visible light region. Do
Figure 2.(a) Photographs of
Wang
In addition, other emitters are also combined with perovskites to realize white emission. Rare-earth phosphors are usually utilized in commercial WLEDs due to their broad emission and high stability, and are hence considered as suitable candidates to be mixed with perovskites to emit white light. Wang
However, due to the thermal instability, the luminescent intensity of seems to decrease when operating on blue or UV chips due to the heat release. This creates problems even in the case of WLEDs at high driving voltages for a long period. Besides, the so-called “wash” process at the end of the preparation is found to aggravate the surface of perovskites, especially for nanocrystals, which may increase the surface traps and defects in , resulting in PL quenching of luminescence. Thus, strategies are required to suppress the surface defects as well as enhance the stability and luminescent properties of perovskites.
The surface of perovskites was previously reported to be fulfilled with traps and defects, including vacancies, vacancies, and interstitial atoms [56,57]. Thus, alkali ions, halide ions, and organic groups are typically used as the termination to decrease the surface traps [58]. For example, Wang
Figure 3.(a) Representative scheme of the surface passivation of
It is well known that organic ligands on the surface play an important role in the passivation of surface defects and dispersion of colloidal nanocrystals. But the conventional oleic acid (OA) and oleylamine (OAm) ligands seem to fall down from the surface because of their long alkyl chains. To solve such an issue, organic ligands with shorter chains and branches, as well as bounding atoms, are used to replace OA/OAm. Shi
Apart from the surface modification, coating is another effective strategy to passivate surface defects of perovskites and prevent them from heat, water, and polar solvents [67–69]. The coating layers, which seem as “shells” on the , should be robust, stable, and processible. As a stable matrix, PMMA has been reported to coat and embed perovskites because of its good processability and low cost [70]. However, the high oxygen diffusion coefficient ( at 22°C) of PMMA may cause photo-oxygen, thus hindering the UV stability of . Actually, among the coating materials, metal inorganics are regarded as a good candidate to coat perovskites. Recently, various metal inorganics, such as , , , , and , have been utilized to coat perovskites with facile methods, including physical deposition and chemical hydrolysis [71–81]. In 2016, Yu
However, due to the fast hydrolysis rate of APTES, the obtained silica is regarded as a matrix to embed nanocrystals, resulting in nonuniform thin films by spin-coating or dip-coating. Zang
Figure 4.(a) Schematic showing the process for coating
Apart from APTES, other silica precursors with slower hydrolysis rates were also proposed to coat perovskites. For example, Liu
Chen
Embedding in a robust and stable matrix is another strategy to improve the optical performance and stability of inorganic perovskites [90]. The existence of interspaces is essential for the embedding candidates, which can promote the crystallization of nanoscale and microscale as well as accommodate them tightly [91–99]. In 2016, Liu
On the other hand, as a typical semiconductor, the properties of perovskites can be modulated by incorporating dopants into them [119–122]. It has been found that the dopants may passivate the surface defects of perovskites, resulting in a further increase of luminous efficiency and improvement of stability for WLEDs [123–127]. Moreover, the doping has been certified as an effective strategy to enhance the CRI of WLEDs based on perovskites by introducing novel luminescent peaks, which would also compensate for the vacant regions of visible light and reduce the use of rare-earth phosphors in WLEDs. For example, Lee
Figure 5.(a) PL and absorption spectra of
Among the dopants in perovskites, is regarded as a prominent candidate for the application of WLEDs, because the -doped perovskites feature novel and broad orange emission with the PL spectra at about 600 nm [136–141]. Chen
Apart from the doping with single ions, two doping ions are incorporated into perovskites together (i.e., codoping) to further promote the development of in the WLEDs. For example, Song
B. Photoluminescence WLEDs of Inorganic Lead-Free Halide Perovskites
Despite the fascinating characteristics and promising white lighting applications, the commercialization of perovskites is still hindered by the toxicity of Pb elements and the intrinsic narrow PL spectra. To overcome the toxicity and performance limitation in the lighting applications, inorganic lead-free halide perovskites are proposed to serve as emitters in WLEDs. Among all the inorganic lead-free halide perovskites, and with nontoxic copper elements have attracted wide attention due to their novel properties and outstanding potentials in WLEDs [147–149]. Hosono
Figure 6.(a) Schematic of the crystal structure of
Zang
Apart from copper, other nontoxic elements, such as , , and , are also used to replace Pb in perovskites to form polyhedra with halide ions [162–168]. Tang
Recently, lead-free double perovskites have received substantial research interest due to their tunable properties and wide applications in lighting. According to the chemical formula, the double perovskites can be divided to two main types: and , where the M represents the lead-free elements. In double perovskites, while the lead-free elements enable the formation of [] octahedra, the configuration and structure of the octahedra may endow the double perovskites with varied dimension, crystal structures, and optoelectronic properties [170]. The broad emissive spectra of double perovskites make them possible to be employed directly as emitters in efficient WLEDs. Kuang
Figure 7.(a) Energy-level diagram of
To further enhance performance of WLEDs based on double perovskites and cut the use of rare-earth phosphors, the doping and alloying strategies have been adopted by researchers to broaden the covering regions and increase the luminescent efficiency of double perovskites [176–182]. Shi
4. ELECTROLUMINESCENCE WLEDs OF IHPs
Although photoluminescence WLEDs based on IHPs have been researched for years, their current efficiency, which is defined as the ratio of luminance to current, is relatively low due to the thermal relaxation and energy loss in chips. Compared to photoluminescence WLEDs, the emission of electroluminescence WLEDs originates from the direct recombination of carriers confined in the emitting layers, recognized as the efficient utilization of current and energy [170,183]. Moreover, for IHPs, their , , and cations with a small radius are found to exhibit increasing ion migration. In comparison, the organic cations with a large radius limit the ion migration in hybrid perovskites [184–186]. Therefore, the enhanced ion migration in IHPs facilitates the release of the Joule heat in LEDs, improving the lifetime of emitting devices. Therefore, researchers start to pay more attention on the IHP-based electroluminescence WLEDs. The emitting materials and parameters of the WLEDs based on IHPs are summarized in Table 1. Summary of Emitting Materials and Key Parameters of Electroluminescence WLEDs Based on IHPsEmitters CIE Coordinate CRI CCT (K) Luminance ( EQE (%) Ref. (0.33, 0.34) 350 [ (0.28, 0.33) 1200 [ (0.32, 0.32) 0.22 [ (0.309, 0.323) 267 0.042 [ (0.311, 0.326) 102 0.25 [ (0.34, 0.34) 75 5153 275 0.015 [ (0.31, 0.36) 657 [ (0.32, 0.31) 93 938 1.2 [ (0.41, 0.44) 92 3900 140 0.06 [ (0.356, 0.356) 71 860.9 0.22 [ (0.35, 0.43) 12200 6.5 [ (0.38, 0.42) 91.6 4264 145 0.15 [ (0.27, 0.31) 10,000 [ (0.327, 0.348) 94 352.3 0.053 [ (0.44, 0.53) 3650 1570 3.1 [ (0.32, 0.32) 94.5 6432 158 0.08 [
In 2017, Yang
Figure 8.(a) Energy band schematic, (b) variety of CIE coordinates, and (c)
Zeng
Shi
Figure 9.(a) Absorption and PL spectra of
In 2021, Wang
5. VISIBLE LIGHT COMMUNICATION OF IHPs
The continuous development of mobile communication, the Internet of Things (IoT), and supercomputing technologies has led to a rapid growth of data communication, bringing new challenges for efficient and high-speed communication technologies [202]. Owing to the solution processability and low energy consumption, the LEDs-based visible light communication (VLC) is of potential practice in next-generation data communication. With great advances being already achieved in white lighting of IHPs, they are considered suitable candidates as light sources of VLC.
WLEDs based on IHPs were first proposed to serve as light sources in VLC by Bakr
Figure 10.(a) Schematic of a VLC system. (b) Bit-error rates (BERs) at different data rates, with the forward error correction (FEC) limit labeled. Reproduced with permission [203]. Copyright 2016, American Chemical Society Publications. (c) Response frequencies of WLEDs driven at increased current. (d) Obtained
Tian
Zang
Figure 11.(a) Schematic diagram of a VLC system. Reproduced with permission [75]. Copyright 2021, Elsevier Publishing Group. (b) Electrical-optical-electrical frequency response, (c) received SNR, (d) bit loading profile of the VLC system based on WLEDs, and the corresponding constellation diagrams of (e) BPSK, (f) 4QAM, (g) 8QAM, (h) 16QAM, (i) 32QAM, and (j) 64QAM, respectively. Reproduced with permission [77]. Copyright 2021, Wiley-VCH GmbH.
Apart from , the WLEDs based on inorganic lead-free perovskites are employable in VLC applications. For example, Zang
Figure 12.(a) Electrical-optical-electrical frequency response of WLEDs based on
6. CHALLENGES AND FUTURE PERSPECTIVE
As discussed and highlighted in this review, more and more attention has been paid to the research and development of IHPs for lighting and visible light communication. For both inorganic lead halide and lead-free perovskites, various strategies including ligand modification, coating, embedding, and doping have been proposed to improve the optical performance and stability by passivating defects, preventing decomposition, and incorporating novel energy states for emission. Owing to the tunable emission of perovskites, they are used as emitters to blend with other phosphors and emitting materials to contract efficient photoluminescence and electroluminescence WLEDs. Besides, the inorganic lead-free perovskites with broad emissive spectra, large Stokes shifts, and high PLQYs have been employed in single-component WLEDs without the need of rare-earth phosphors. Furthermore, high-performance WLEDs have been utilized in the VLC applications to act as light sources for outputting light data and showing a high bandwidth response and high communication rates. However, there are research problems and challenges in IHPs as well as their applications in lighting and VLC, which hinder their potential commercialization. Here, the future perspectives to further promote the research and development of lighting and VLC based on IHPs are summarized, focusing on the following challenges.
References
[1] H. Xiang, R. Wang, J. Chen, F. Li, H. Zeng. Research progress of full electroluminescent white light-emitting diodes based on a single emissive layer. Light Sci. Appl., 10, 206(2021).
[2] X. K. Liu, W. Xu, S. Bai, Y. Jin, J. Wang, R. H. Friend, F. Gao. Metal halide perovskites for light-emitting diodes. Nat. Mater., 20, 10-21(2021).
[3] X. Li, X. Gao, X. Zhang, X. Shen, M. Lu, J. Wu, Z. Shi, V. L. Colvin, J. Hu, X. Bai, W. W. Yu, Y. Zhang. Lead-free halide perovskites for light emission: recent advances and perspectives. Adv. Sci., 8, 2003334(2021).
[4] Z. Chen, Z. Li, T. R. Hopper, A. A. Bakulin, H. L. Yip. Materials, photophysics and device engineering of perovskite light-emitting diodes. Rep. Prog. Phys., 84, 046401(2021).
[5] G. Zhou, B. Su, J. Huang, Q. Zhang, Z. Xia. Broad-band emission in metal halide perovskites: mechanism, materials, and applications. Mater. Sci. Eng. R, 141, 100548(2020).
[6] P. Dang, D. Liu, G. Li, A. A. Al Kheraif, J. Lin. Recent advances in bismuth ion-doped phosphor materials: structure design, tunable photoluminescence properties, and application in white LEDs. Adv. Opt. Mater., 8, 1901993(2020).
[7] J. Luo, M. Hu, G. Niu, J. Tang. Lead-free halide perovskites and perovskite variants as phosphors toward light-emitting applications. ACS Appl. Mater. Interfaces, 11, 31575-31584(2019).
[8] Y. Wei, Z. Cheng, J. Lin. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev., 48, 310-350(2019).
[9] A. Dey, J. Ye, A. De, E. Debroye, S. K. Ha, E. Bladt, A. S. Kshirsagar, Z. Wang, J. Yin, Y. Wang, L. N. Quan, F. Yan, M. Gao, X. Li, J. Shamsi, T. Debnath, M. Cao, M. A. Scheel, S. Kumar, J. A. Steele, M. Gerhard, L. Chouhan, K. Xu, X. G. Wu, Y. Li, Y. Zhang, A. Dutta, C. Han, I. Vincon, A. L. Rogach, A. Nag, A. Samanta, B. A. Korgel, C. J. Shih, D. R. Gamelin, D. H. Son, H. Zeng, H. Zhong, H. Sun, H. V. Demir, I. G. Scheblykin, I. Mora-Sero, J. K. Stolarczyk, J. Z. Zhang, J. Feldmann, J. Hofkens, J. M. Luther, J. Perez-Prieto, L. Li, L. Manna, M. I. Bodnarchuk, M. V. Kovalenko, M. B. J. Roeffaers, N. Pradhan, O. F. Mohammed, O. M. Bakr, P. Yang, P. Muller-Buschbaum, P. V. Kamat, Q. Bao, Q. Zhang, R. Krahne, R. E. Galian, S. D. Stranks, S. Bals, V. Biju, W. A. Tisdale, Y. Yan, R. L. Z. Hoye, L. Polavarapu. State of the art and prospects for halide perovskite nanocrystals. ACS Nano, 15, 10775-10981(2021).
[10] F. Zhou, Z. Li, W. Lan, Q. Wang, L. Ding, Z. Jin. Halide perovskite, a potential scintillator for X-ray detection. Small Methods, 4, 2000506(2020).
[11] S. A. Khan, C. Li, A. Jalil, X. Xin, M. Rauf, J. Ahmed, M. A. M. Khan, B. Dong, J. Zhu, S. Agathopoulos. Development of structure and tuning ability of the luminescence of lead-free halide perovskite nanocrystals (NCs). Chem. Eng. J., 420, 127603(2021).
[12] X. Wang, T. Zhang, Y. Lou, Y. Zhao. All-inorganic lead-free perovskites for optoelectronic applications. Mater. Chem. Front., 3, 365-375(2019).
[13] F. Zhang, J. Song, B. Han, T. Fang, J. Li, H. Zeng. High-efficiency pure-color inorganic halide perovskite emitters for ultrahigh-definition displays: progress for backlighting displays and electrically driven devices. Small Methods, 2, 1700382(2018).
[14] F. P. Garcia de Arquer, D. V. Talapin, V. I. Klimov, Y. Arakawa, M. Bayer, E. H. Sargent. Semiconductor quantum dots: technological progress and future challenges. Science, 373, eaaz8541(2021).
[15] L. Chouhan, S. Ghimire, C. Subrahmanyam, T. Miyasaka, V. Biju. Synthesis, optoelectronic properties and applications of halide perovskites. Chem. Soc. Rev., 49, 2869-2885(2020).
[16] W. Lv, L. Li, M. Xu, J. Hong, X. Tang, L. Xu, Y. Wu, R. Zhu, R. Chen, W. Huang. Improving the stability of metal halide perovskite quantum dots by encapsulation. Adv. Mater., 31, 1900682(2019).
[17] W. Lin, X. Hu, L. Mo, X. Jiang, X. Xing, L. Shui, S. Priya, K. Wang, G. Zhou. Progresses on novel B-site perovskite nanocrystals. Adv. Opt. Mater., 9, 2100261(2021).
[18] H. Huang, L. Polavarapu, J. A. Sichert, A. S. Susha, A. S. Urban, A. L. Rogach. Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications. NPG Asia Mater., 8, e328(2016).
[19] F. Igbari, Z. K. Wang, L. S. Liao. Progress of lead-free halide double perovskites. Adv. Energy Mater., 9, 1803150(2019).
[20] M. D. Smith, H. I. Karunadasa. White-light emission from layered halide perovskites. Acc. Chem. Res., 51, 619-627(2018).
[21] J. Sun, J. Yang, J. I. Lee, J. H. Cho, M. S. Kang. Lead-free perovskite nanocrystals for light-emitting devices. J. Phys. Chem. Lett., 9, 1573-1583(2018).
[22] H. Yin, Y. Xian, Y. Zhang, W. Li, J. Fan. Structurally stabilizing and environment friendly triggers: double-metallic lead-free perovskites. Solar RRL, 3, 1900148(2019).
[23] M. Bidikoudi, E. Fresta, R. D. Costa. White perovskite based lighting devices. Chem. Commun., 54, 8150-8169(2018).
[24] Z. Gao, X. Wang, Y. Bai, C. Sun, H. Liu, L. Wang, S. Su, K. Tian, Z. Zhang, W. Bi. High color rendering index and stable white light emitting diodes fabricated from lead bromide perovskites. Appl. Phys. Lett., 115, 153103(2019).
[25] Y. Deng, X. Lin, W. Fang, D. Di, L. Wang, R. H. Friend, X. Peng, Y. Jin. Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun., 11, 2309(2020).
[26] Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X. Y. Zhu, S. Jin. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater., 4, 169-188(2019).
[27] A. Fakharuddin, U. Shabbir, W. Qiu, T. Iqbal, M. Sultan, P. Heremans, L. Schmidt-Mende. Inorganic and layered perovskites for optoelectronic devices. Adv. Mater., 31, 1807095(2019).
[28] N. K. Tailor, S. Kar, P. Mishra, A. These, C. Kupfer, H. Hu, M. Awais, M. Saidaminov, M. I. Dar, C. Brabec, S. Satapathi. “Advances in lead-free perovskite single crystals: fundamentals and applications. ACS Mater. Lett., 3, 1025-1080(2021).
[29] S. Zhao, W. Cai, H. Wang, Z. Zang, J. Chen. All-inorganic lead-free perovskite(-like) single crystals: synthesis, properties, and applications. Small Methods, 5, 2001308(2021).
[30] Z. Shen, S. Zhao, D. Song, Z. Xu, B. Qiao, P. Song, Q. Bai, J. Cao, G. Zhang, W. Swelm. Improving the quality and luminescence performance of all-inorganic perovskite nanomaterials for light-emitting devices by surface engineering. Small, 16, 1907089(2020).
[31] C. H. Lu, G. V. Biesold-McGee, Y. Liu, Z. Kang, Z. Lin. Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chem. Soc. Rev., 49, 4953-5007(2020).
[32] Y. Liu, Z. Yang, S. F. Liu. Recent progress in single-crystalline perovskite research including crystal preparation, property evaluation, and applications. Adv. Sci., 5, 1700471(2018).
[33] Y. M. Chen, Y. Zhou, Q. Zhao, J. Y. Zhang, J. P. Ma, T. T. Xuan, S. Q. Guo, Z. J. Yong, J. Wang, Y. Kuroiwa, C. Moriyoshi, H. T. Sun. Cs4PbBr6/CsPbBr3 perovskite composites with near-unity luminescence quantum yield: large-scale synthesis, luminescence and formation mechanism, and white light-emitting diode application. ACS Appl. Mater. Interfaces, 10, 15905-15912(2018).
[34] M. Chen, H. Hu, Y. Tan, N. Yao, Q. Zhong, B. Sun, M. Cao, Q. Zhang, Y. Yin. Controlled growth of dodecapod-branched CsPbBr3 nanocrystals and their application in white light emitting diodes. Nano Energy, 53, 559-566(2018).
[35] Y. Wei, K. Li, Z. Cheng, M. Liu, H. Xiao, P. Dang, S. Liang, Z. Wu, H. Lian, J. Lin. Epitaxial growth of CsPbX3 (X = Cl, Br, I) perovskite quantum dots via surface chemical conversion of Cs2GeF6 double perovskites: a novel strategy for the formation of leadless hybrid perovskite phosphors with enhanced stability. Adv. Mater., 31, 1807592(2019).
[36] Z. Gong, W. Zheng, Y. Gao, P. Huang, D. Tu, R. Li, J. Wei, W. Zhang, Y. Zhang, X. Chen. Full-spectrum persistent luminescence tuning using all-inorganic perovskite quantum dots. Angew. Chem. Int. Ed., 58, 6943-6947(2019).
[37] T. Xuan, X. Yang, S. Lou, J. Huang, Y. Liu, J. Yu, H. Li, K. L. Wong, C. Wang, J. Wang. Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes. Nanoscale, 9, 15286-15290(2017).
[38] M. Su, B. Fan, H. Li, K. Wang, Z. Luo. Hydroxyl terminated mesoporous silica-assisted dispersion of ligand-free CsPbBr3/Cs4PbBr6 nanocrystals in polymer for stable white LED. Nanoscale, 11, 1335-1342(2019).
[39] D. Yan, S. Zhao, Y. Zhang, H. Wang, Z. Zang. Highly efficient emission and high-CRI warm white light-emitting diodes from ligand-modified CsPbBr3 quantum dots. Opto-Electron Adv., 5, 200075(2022).
[40] P. Wang, X. Bai, C. Sun, X. Zhang, T. Zhang, Y. Zhang. Multicolor fluorescent light-emitting diodes based on cesium lead halide perovskite quantum dots. Appl. Phys. Lett., 109, 063106(2016).
[41] Y. Li, L. Dong, R. Patterson, Z. L. Teh, Y. Hu, S. Huang, C. Chen. Stabilizing CsPbBr3 perovskite quantum dots on zirconium phosphate nanosheets through an ion exchange/surface adsorption strategy. Chem. Eng. J., 381, 122735(2020).
[42] Y. Altintas, I. Torun, A. F. Yazici, E. Beskazak, T. Erdem, M. Serdar Onses, E. Mutlugun. Multiplexed patterning of cesium lead halide perovskite nanocrystals by additive jet printing for efficient white light generation. Chem. Eng. J., 380, 122493(2020).
[43] J. Hao, X. Qu, L. Qiu, G. Li, Y. Wei, G. Xing, H. Wang, C. Yan, H. S. Jang, Z. Cheng, J. Lin. One-step loading on natural mineral halloysite nanotube: an effective way to enhance the stability of perovskite CsPbX3 (X = Cl, Br, I) quantum dots. Adv. Opt. Mater., 7, 1801323(2018).
[44] H. Wu, S. Lin, R. Wang, X. You, Y. Chi. Water-stable and ion exchange-free inorganic perovskite quantum dots encapsulated in solid paraffin and their application in light emitting diodes. Nanoscale, 11, 5557-5563(2019).
[45] Q. Pan, H. Hu, Y. Zou, M. Chen, L. Wu, D. Yang, X. Yuan, J. Fan, B. Sun, Q. Zhang. Microwave-assisted synthesis of high-quality “all-inorganic” CsPbX3 (X = Cl, Br, I) perovskite nanocrystals and their application in light emitting diodes. J. Mater. Chem. C, 5, 10947-10954(2017).
[46] X. Xu, H. He, Z. Fang, H. Lou, C. Lin, L. Chen, Z. Ye. “Ultrasonication-assisted ambient-air synthesis of monodispersed blue-emitting CsPbBr3 quantum dots for white light emission. ACS Appl. Nano Mater., 2, 6874-6879(2019).
[47] M. Chen, Y. Zou, L. Wu, Q. Pan, D. Yang, H. Hu, Y. Tan, Q. Zhong, Y. Xu, H. Liu, B. Sun, Q. Zhang. Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire. Adv. Funct. Mater., 27, 1701121(2017).
[48] T. W. Kang, S. Lee, Y. J. Park, G. J. Jeong, J. S. Kim, B. Bae, J. Hwang, S. W. Kim. Enhancement of the optical properties of CsPbBr3 perovskite nanocrystals using three different solvents. Opt. Lett., 45, 4972-4975(2020).
[49] F. Palazon, F. Di Stasio, Q. A. Akkerman, R. Krahne, M. Prato, L. Manna. Polymer-free films of inorganic halide perovskite nanocrystals as UV-to-white color-conversion layers in LEDs. Chem. Mater., 28, 2902-2906(2016).
[50] G. Li, H. Wang, T. Zhang, L. Mi, Y. Zhang, Z. Zhang, W. Zhang, Y. Jiang. Solvent-polarity-engineered controllable synthesis of highly fluorescent cesium lead halide perovskite quantum dots and their use in white light-emitting diodes. Adv. Funct. Mater., 26, 8478-8486(2016).
[51] X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, H. Zeng. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater., 26, 2435-2445(2016).
[52] J. Zhou, F. Huang, H. Lin, Z. Lin, J. Xu, Y. Wang. Inorganic halide perovskite quantum dot modified YAG-based white LEDs with superior performance. J. Mater. Chem. C, 4, 7601-7606(2016).
[53] H. C. Yoon, H. Kang, S. Lee, J. H. Oh, H. Yang, Y. R. Do. Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance. ACS Appl. Mater. Interfaces, 8, 18189-18200(2016).
[54] F. Fang, W. Chen, Y. Li, H. Liu, M. Mei, R. Zhang, J. Hao, M. Mikita, W. Cao, R. Pan, K. Wang, X. W. Sun. Employing polar solvent controlled ionization in precursors for synthesis of high-quality inorganic perovskite nanocrystals at room temperature. Adv. Funct. Mater., 28, 1706000(2018).
[55] J. Zhang, L. Fan, J. Li, X. Liu, R. Wang, L. Wang, G. Tu. Growth mechanism of CsPbBr3 perovskite nanocrystals by a co-precipitation method in a CSTR system. Nano Res., 12, 121-127(2018).
[56] Y. Cai, L. Wang, T. Zhou, P. Zheng, Y. Li, R. J. Xie. Improved stability of CsPbBr3 perovskite quantum dots achieved by suppressing interligand proton transfer and applying a polystyrene coating. Nanoscale, 10, 21441-21450(2018).
[57] Y. Zu, J. Dai, L. Li, F. Yuan, X. Chen, Z. Feng, K. Li, X. Song, F. Yun, Y. Yu, B. Jiao, H. Dong, X. Hou, M. Ju, Z. Wu. Ultra-stable CsPbBr3 nanocrystals with near-unity photoluminescence quantum yield via postsynthetic surface engineering. J. Mater. Chem. A, 7, 26116-26122(2019).
[58] G. Almeida, I. Infante, L. Manna. Resurfacing halide perovskite nanocrystals. Science, 364, 833-834(2019).
[59] H. Lin, Q. Wei, K. W. Ng, J. Y. Dong, J. L. Li, W. W. Liu, S. S. Yan, S. Chen, G. C. Xing, X. S. Tang, Z. K. Tang, S. P. Wang. Stable and efficient blue-emitting CsPbBr3 nanoplatelets with potassium bromide surface passivation. Small, 17, 2101359(2021).
[60] F. Li, Y. Liu, H. Wang, Q. Zhan, Q. Liu, Z. Xia. Postsynthetic surface trap removal of CsPbX3 (X = Cl, Br, or I) quantum dots via a ZnX2/hexane solution toward an enhanced luminescence quantum yield. Chem. Mater., 30, 8546-8554(2018).
[61] L. Zhang, W. Liang, L. Xu, M. Zhu, X. Wang, J. Su, L. Li, N. Liu, Z. Zhang, Y. Gao. Room-temperature quaternary alkylammonium passivation toward morphology-controllable CsPbBr3 nanocrystals with excellent luminescence and stability for white LEDs. Chem. Eng. J., 417, 129349(2021).
[62] Y. Zhang, G. Li, C. She, S. Liu, F. Yue, C. Jing, Y. Cheng, J. Chu. Room temperature preparation of highly stable cesium lead halide perovskite nanocrystals by ligand modification for white light-emitting diodes. Nano Res., 14, 2770-2775(2021).
[63] S. Chen, Q. Zhong, J. Liu, W. Guan, P. Li, I. Mahmood, M. Cao, Q. Zhang. Improved photophysical properties and durability of CsPbBr3 NCs endowed by inorganic oxoacid and bromide ions. Nanoscale, 13, 9634-9640(2021).
[64] C. Gong, X. Wang, X. Xia, X. Yang, L. Wang, F. Li.
[65] S. Thapa, G. C. Adhikari, H. Zhu, P. Zhu. Scalable synthesis of highly luminescent and stable thiocyanate based CsPbX3 perovskite nanocrystals for efficient white light-emitting diodes. J. Alloys Compd., 860, 158501(2021).
[66] H. Xu, J. Wang, T. Xuan, C. Lv, J. Hou, L. Zhang, Y. Dong, J. Shi. Convenient and large-scale synthesis of high-quality, all-inorganic lead halide perovskite nanocrystals for white light-emitting diodes. Chem. Eng. J., 364, 20-27(2019).
[67] H. Lian, Y. Li, K. Sharafudeen, W. Zhao, G. R. Krishnan, S. Zhang, J. Qiu, K. Huang, G. Han. Highly thermotolerant metal halide perovskite solids. Adv. Mater., 32, 2002495(2020).
[68] T. Liang, W. Liu, X. Liu, Y. Li, W. Wu, J. Fan.
[69] X. Shen, C. Sun, X. Bai, X. Zhang, Y. Wang, Y. Wang, H. Song, W. W. Yu. Efficient and stable CsPb(Br/I)3@anthracene composites for white light-emitting devices. ACS Appl. Mater. Interfaces, 10, 16768-16775(2018).
[70] Y. Cai, Y. Li, L. Wang, R. J. Xie. A facile synthesis of water-resistant CsPbBr3 perovskite quantum dots loaded poly(methyl methacrylate) composite microspheres based on
[71] Y. Chang, Y. J. Yoon, G. Li, E. Xu, S. Yu, C. H. Lu, Z. Wang, Y. He, C. H. Lin, B. K. Wagner, V. V. Tsukruk, Z. Kang, N. Thadhani, Y. Jiang, Z. Lin. All-inorganic perovskite nanocrystals with a stellar set of stabilities and their use in white light-emitting diodes. ACS Appl. Mater. Interfaces, 10, 37267-37276(2018).
[72] S. Park, M. N. An, G. Almeida, F. Palazon, D. Spirito, R. Krahne, Z. Dang, L. De Trizio, L. Manna. CsPbX3/SiO
[73] H. C. Yoon, S. Lee, J. K. Song, H. Yang, Y. R. Do. Efficient and stable CsPbBr3 quantum-dot powders passivated and encapsulated with a mixed silicon nitride and silicon oxide inorganic polymer matrix. ACS Appl. Mater. Interfaces, 10, 11756-11767(2018).
[74] Z. Lin, R. Huang, W. Zhang, Y. Zhang, J. Song, H. Li, D. Hou, Y. Guo, C. Song, N. Wan, P. K. Chu. Highly luminescent and stable Si-based CsPbBr3 quantum dot thin films prepared by glow discharge plasma with real-time and
[75] X. Li, W. Cai, H. Guan, S. Zhao, S. Cao, C. Chen, M. Liu, Z. Zang. Highly stable CsPbBr3 quantum dots by silica-coating and ligand modification for white light-emitting diodes and visible light communication. Chem. Eng. J., 419, 129551(2021).
[76] Y. Jing, M. J. M. Merkx, J. Cai, K. Cao, W. M. M. Kessels, A. J. M. Mackus, R. Chen. Nanoscale encapsulation of perovskite nanocrystal luminescent films via plasma-enhanced SiO2 atomic layer deposition. ACS Appl. Mater. Interfaces, 12, 53519-53527(2020).
[77] Q. Mo, C. Chen, W. Cai, S. Zhao, D. Yan, Z. Zang. Room temperature synthesis of stable zirconia-coated CsPbBr3 nanocrystals for white light-emitting diodes and visible light communication. Laser Photon. Rev., 15, 2100278(2021).
[78] V. Naresh, B. H. Kim, N. Lee. Synthesis of CsPbX3 (X = Cl/Br, Br, and Br/I)@SiO2/PMMA composite films as color-conversion materials for achieving tunable multi-color and white light emission. Nano Res., 14, 1187-1194(2020).
[79] Y. Jing, K. Cao, B. Zhou, S. Geng, Y. Wen, B. Shan, R. Chen. Two-step hybrid passivation strategy for ultrastable photoluminescence perovskite nanocrystals. Chem. Mater., 32, 10653-10662(2020).
[80] F. Zhang, Z. F. Shi, Z. Z. Ma, Y. Li, S. Li, D. Wu, T. T. Xu, X. J. Li, C. X. Shan, G. T. Du. Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices. Nanoscale, 10, 20131-20139(2018).
[81] I. Torun, Y. Altintas, A. F. Yazici, E. Mutlugun, M. S. Onses. Solid-state encapsulation and color tuning in films of cesium lead halide perovskite nanocrystals for white light generation. ACS Appl. Nano Mater., 2, 1185-1193(2019).
[82] C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang, W. W. Yu. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv. Mater., 28, 10088-10094(2016).
[83] H. Guan, S. Zhao, H. Wang, D. Yan, M. Wang, Z. Zang. Room temperature synthesis of stable single silica-coated CsPbBr3 quantum dots combining tunable red emission of Ag-In-Zn-S for high-CRI white light-emitting diodes. Nano Energy, 67, 104279(2020).
[84] F. Gao, W. Yang, X. Liu, Y. Li, W. Liu, H. Xu, Y. Liu. Highly stable and luminescent silica-coated perovskite quantum dots at nanoscale-particle level via nonpolar solvent synthesis. Chem. Eng. J., 407, 128001(2021).
[85] Y. Lin, X. Zheng, Z. Shangguan, G. Chen, W. Huang, W. Guo, X. Fan, X. Yang, Z. Zhao, T. Wu, Z. Chen. All-inorganic encapsulation for remarkably stable cesium lead halide perovskite nanocrystals: toward full-color display applications. J. Mater. Chem. C, 9, 12303-12313(2021).
[86] M. Imran, B. T. Mai, L. Goldoni, M. Cirignano, H. B. Jalali, F. Di Stasio, T. Pellegrino, L. Manna. Switchable anion exchange in polymer-encapsulated APbX3 nanocrystals delivers stable all-perovskite white emitters. ACS Energy Lett., 6, 2844-2853(2021).
[87] J. Y. Sun, F. T. Rabouw, X. F. Yang, X. Y. Huang, X. P. Jing, S. Ye, Q. Y. Zhang. Facile two-step synthesis of all-inorganic perovskite CsPbX3 (X = Cl, Br, and I) zeolite-Y composite phosphors for potential backlight display application. Adv. Funct. Mater., 27, 1704371(2017).
[88] H. Hu, L. Wu, Y. Tan, Q. Zhong, M. Chen, Y. Qiu, D. Yang, B. Sun, Q. Zhang, Y. Yin. Interfacial synthesis of highly stable CsPbX3/oxide Janus nanoparticles. J. Am. Chem. Soc., 140, 406-412(2018).
[89] H. Huang, B. Chen, Z. Wang, T. F. Hung, A. S. Susha, H. Zhong, A. L. Rogach. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chem. Sci., 7, 5699-5703(2016).
[90] X. Chen, F. Zhang, Y. Ge, L. Shi, S. Huang, J. Tang, Z. Lv, L. Zhang, B. Zou, H. Zhong. Centimeter-sized Cs4PbBr6 crystals with embedded CsPbBr3 nanocrystals showing superior photoluminescence: nonstoichiometry induced transformation and light-emitting applications. Adv. Funct. Mater., 28, 1706567(2018).
[91] S. Ye, J. Y. Sun, Y. H. Han, Y. Y. Zhou, Q. Y. Zhang. Confining Mn2+-doped lead halide perovskite in zeolite-Y as ultrastable orange-red phosphor composites for white light-emitting diodes. ACS Appl. Mater. Interfaces, 10, 24656-24664(2018).
[92] W. Yang, F. Gao, Y. Qiu, W. Liu, H. Xu, L. Yang, Y. Liu. CsPbBr3-quantum-dots/polystyrene@silica hybrid microsphere structures with significantly improved stability for white LEDs. Adv. Opt. Mater., 7, 1900546(2019).
[93] Y. Zhao, C. Xie, X. Zhang, P. Yang. CsPbX3 quantum dots embedded in zeolitic imidazolate framework-8 microparticles for bright white light-emitting devices. ACS Appl. Nano Mater., 4, 5478-5485(2021).
[94] B. Li, Y. Zhang, Y. Xu, Z. Xia. Design optimization of CsPbBr3 nanocrystals into zeolite beta composites as ultra-stable green emitters for backlight display applications. J. Mater. Chem. C, 9, 12118-12123(2021).
[95] J. Ren, X. Zhou, Y. Wang. Dual-emitting CsPbX3@ZJU-28 (X = Cl, Br, I) composites with enhanced stability and unique optical properties for multifunctional applications. Chem. Eng. J., 391, 123622(2020).
[96] Y. H. Song, S. Y. Park, J. S. Yoo, W. K. Park, H. S. Kim, S. H. Choi, S. B. Kwon, B. K. Kang, J. P. Kim, H. S. Jung, D. H. Yoon, W. S. Yang, Y. S. Seo. Efficient and stable green-emitting CsPbBr3 perovskite nanocrystals in a microcapsule for light emitting diodes. Chem. Eng. J., 352, 957-963(2018).
[97] J. Ren, T. Li, X. Zhou, X. Dong, A. V. Shorokhov, M. B. Semenov, V. D. Krevchik, Y. Wang. Encapsulating all-inorganic perovskite quantum dots into mesoporous metal organic frameworks with significantly enhanced stability for optoelectronic applications. Chem. Eng. J., 358, 30-39(2019).
[98] Y. Wei, H. Xiao, Z. Xie, S. Liang, S. Liang, X. Cai, S. Huang, A. A. Al Kheraif, H. S. Jang, Z. Cheng, J. Lin. Highly luminescent lead halide perovskite quantum dots in hierarchical CaF2 matrices with enhanced stability as phosphors for white light-emitting diodes. Adv. Opt. Mater., 6, 1701343(2018).
[99] M. N. An, S. Park, R. Brescia, M. Lutfullin, L. Sinatra, O. M. Bakr, L. De Trizio, L. Manna. Low-temperature molten salts synthesis: CsPbBr3 nanocrystals with high photoluminescence emission buried in mesoporous SiO2. ACS Energy Lett., 6, 900-907(2021).
[100] H. C. Wang, S. Y. Lin, A. C. Tang, B. P. Singh, H. C. Tong, C. Y. Chen, Y. C. Lee, T. L. Tsai, R. S. Liu. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color Gamut used for backlight display. Angew. Chem. Int. Ed., 55, 7924-7929(2016).
[101] B. Yang, F. Zheng, S. Mei, Z. Chen, Y. Xie, H. Dai, X. Wei, W. Zhang, F. Xie, J. Ju, Y. Chu, J. Zou, R. Guo. Component regulation and crystallization mechanism of CsPbBr3/Cs4PbBr6 perovskite composite quantum dots-embedded borosilicate glass for light emitting application. Appl. Surf. Sci., 512, 145655(2020).
[102] D. Chen, S. Yuan, X. Chen, J. Li, Q. Mao, X. Li, J. Zhong. CsPbX3 (X = Br, I) perovskite quantum dot embedded low-melting phosphosilicate glasses: controllable crystallization, thermal stability and tunable emissions. J. Mater. Chem. C, 6, 6832-6839(2018).
[103] Y. Ye, W. Zhang, Z. Zhao, J. Wang, C. Liu, Z. Deng, X. Zhao, J. Han. Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications. Adv. Opt. Mater., 7, 1801663(2019).
[104] S. Yuan, D. Chen, X. Li, J. Zhong, X. Xu. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing. ACS Appl. Mater. Interfaces, 10, 18918-18926(2018).
[105] G. Shao, S. Liu, L. Ding, Z. Zhang, W. Xiang, X. Liang. K
[106] D. Chen, Y. Liu, C. Yang, J. Zhong, S. Zhou, J. Chen, H. Huang. Promoting photoluminescence quantum yields of glass-stabilized CsPbX3 (X = Cl, Br, I) perovskite quantum dots through fluorine doping. Nanoscale, 11, 17216-17221(2019).
[107] W. Lv, L. Li, M. Li, L. Xu, W. Huang, R. Chen. Self-assembly of completely inorganic perovskite nanocrystals with improved stability by anchoring on kaolinite lamellae. Adv. Opt. Mater., 8, 1901485(2020).
[108] Y. H. Song, S. H. Choi, J. S. Yoo, B. K. Kang, E. K. Ji, H. S. Jung, D. H. Yoon. Design of long-term stable red-emitting CsPb(Br0.4, I0.6)3 perovskite quantum dot film for generation of warm white light. Chem. Eng. J., 313, 461-465(2017).
[109] S. Tu, M. Chen, L. Wu. Dual-encapsulation for highly stable all-inorganic perovskite quantum dots for long-term storage and reuse in white light-emitting diodes. Chem. Eng. J., 412, 128688(2021).
[110] Y. T. Hsieh, Y. F. Lin, W. R. Liu. Enhancing the water resistance and stability of CsPbBr3 perovskite quantum dots for light-emitting-diode applications through encapsulation in waterproof polymethylsilsesquioxane aerogels. ACS Appl. Mater. Interfaces, 12, 58049-58059(2020).
[111] Y. Wang, Y. Dong, Q. Liu, X. Guo, M. Zhang, Y. Li.
[112] Y. H. Song, J. S. Yoo, B. K. Kang, S. H. Choi, E. K. Ji, H. S. Jung, D. H. Yoon. Long-term stable stacked CsPbBr3 quantum dot films for highly efficient white light generation in LEDs. Nanoscale, 8, 19523-19526(2016).
[113] Y. Li, Y. Lv, Z. Guo, L. Dong, J. Zheng, C. Chai, N. Chen, Y. Lu, C. Chen. One-step preparation of long-term stable and flexible CsPbBr3 perovskite quantum dots/ethylene vinyl acetate copolymer composite films for white light-emitting diodes. ACS Appl. Mater. Interfaces, 10, 15888-15894(2018).
[114] M. Meyns, M. Peralvarez, A. Heuer-Jungemann, W. Hertog, M. Ibanez, R. Nafria, A. Genc, J. Arbiol, M. V. Kovalenko, J. Carreras, A. Cabot, A. G. Kanaras. Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs. ACS Appl. Mater. Interfaces, 8, 19579-19586(2016).
[115] H. C. Yoon, Y. R. Do. Stable and efficient green perovskite nanocrystal-polysilazane films for white LEDs using an electrospray deposition process. ACS Appl. Mater. Interfaces, 11, 22510-22520(2019).
[116] C. Muthu, J. K. Pious, T. Thankachan, N. Krishna, C. Vijayakumar. Stable and efficient white photoluminescence from cesium lead halide perovskite nanocrystals/polyfluorene organogel composite by suppressing of halide ion migration. Adv. Opt. Mater., 9, 2100601(2021).
[117] T. Xuan, J. Huang, H. Liu, S. Lou, L. Cao, W. Gan, R. S. Liu, J. Wang. Super-hydrophobic cesium lead halide perovskite quantum dot-polymer composites with high stability and luminescent efficiency for wide color gamut white light-emitting diodes. Chem. Mater., 31, 1042-1047(2019).
[118] G. C. Adhikari, S. Thapa, H. Zhu, P. Zhu. UV resin enhanced stability of metal halide perovskite nanocrystals for white light-emitting diodes. ACS Appl. Electron. Mater., 2, 35-40(2019).
[119] S. Zhao, Y. Zhang, Z. Zang. Room-temperature doping of ytterbium into efficient near-infrared emission CsPbBr1.5Cl1.5 perovskite quantum dots. Chem. Commun., 56, 5811-5814(2020).
[120] B. J. Moon, S. J. Kim, S. Lee, A. Lee, H. Lee, D. S. Lee, T. W. Kim, S. K. Lee, S. Bae, S. H. Lee. Rare-earth-element-ytterbium-substituted lead-free inorganic perovskite nanocrystals for optoelectronic applications. Adv. Mater., 31, 1901716(2019).
[121] J. Shamsi, A. S. Urban, M. Imran, L. De Trizio, L. Manna. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev., 119, 3296-3348(2019).
[122] Y. Zhao, X. Zhang, C. Xie, W. Shi, P. Yang, S. P. Jiang. Controlling Mn emission in CsPbCl3 nanocrystals via ion exchange toward enhanced and tunable white photoluminescence. J. Phys. Chem. C, 124, 27032-27039(2020).
[123] F. Ren, F. Chen, E. Mei, X. Liang, P. Qian, W. Xiang. Mg2+-assisted passivation of surface defects of perovskite polymer composite films for white light-emitting diodes. ACS Photon., 8, 2130-2138(2021).
[124] S. Liu, G. Shao, L. Ding, J. Liu, W. Xiang, X. Liang. Sn-doped CsPbBr3 QDs glasses with excellent stability and optical properties for WLED. Chem. Eng. J., 361, 937-944(2019).
[125] S. Li, Z. Shi, F. Zhang, L. Wang, Z. Ma, D. Yang, Z. Yao, D. Wu, T. T. Xu, Y. Tian, Y. Zhang, C. Shan, X. J. Li. Sodium doping-enhanced emission efficiency and stability of CsPbBr3 nanocrystals for white light-emitting devices. Chem. Mater., 31, 3917-3928(2019).
[126] Q. He, Y. Zhang, Y. Yu, Y. Chen, M. Jin, E. Mei, X. Liang, L. Zhai, W. Xiang. Ultrastable Gd3+ doped CsPbBrI2 nanocrystals red glass for high efficiency WLEDs. Chem. Eng. J., 411, 128530(2021).
[127] P. Lin, H. Chen, Z. Wei, Y. Lin, J. Lin, Y. Chen, Z. Cheng. Continuous-flow synthesis of doped all-inorganic perovskite nanocrystals enabled by a microfluidic reactor for light-emitting diode application. Sci. China Mater., 63, 1526-1536(2020).
[128] V. Naresh, N. Lee. “Zn(II)-doped cesium lead halide perovskite nanocrystals with high quantum yield and wide color tunability for color-conversion light-emitting displays. ACS Appl. Nano Mater., 3, 7621-7632(2020).
[129] H. Ding, W. Liu, Y. Zheng, C. Li, H. Jiang, X. Wang. Transition metal halide-doped, highly stable all-inorganic perovskite nanocrystals for fabrication of white light-emitting diodes. J. Mater. Chem. C, 7, 1690-1695(2019).
[130] M. Liu, G. Zhong, Y. Yin, J. Miao, K. Li, C. Wang, X. Xu, C. Shen, H. Meng. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv. Sci., 4, 1700335(2017).
[131] G. C. Adhikari, S. Thapa, H. Zhu, P. Zhu. Mg2+-alloyed all-inorganic halide perovskites for white light-emitting diodes by 3D-printing method. Adv. Opt. Mater., 7, 1900916(2019).
[132] Y. Xie, B. Peng, I. Bravic, Y. Yu, Y. Dong, R. Liang, Q. Ou, B. Monserrat, S. Zhang. Highly efficient blue-emitting CsPbBr3 perovskite nanocrystals through neodymium doping. Adv. Sci., 7, 2001698(2020).
[133] D. Yan, Q. Mo, S. Zhao, W. Cai, Z. Zang. Room temperature synthesis of Sn(2+) doped highly luminescent CsPbBr3 quantum dots for high CRI white light-emitting diodes. Nanoscale, 13, 9740-9746(2021).
[134] D. Chen, G. Fang, X. Chen. Silica-coated Mn-doped CsPb(Cl/Br)3 inorganic perovskite quantum dots: exciton-to-Mn energy transfer and blue-excitable solid-state Lighting. ACS Appl. Mater. Interfaces, 9, 40477-40487(2017).
[135] X. Tang, W. Chen, Z. Liu, J. Du, Z. Yao, Y. Huang, C. Chen, Z. Yang, T. Shi, W. Hu, Z. Zang, Y. Chen, Y. Leng. Ultrathin, core-shell structured SiO2 coated Mn(2+) -doped perovskite quantum dots for bright white light-emitting diodes. Small, 15, 1900484(2019).
[136] F. Li, Z. Xia, C. Pan, Y. Gong, L. Gu, Q. Liu, J. Z. Zhang. High Br− content CsPb(Cl
[137] W. Chen, T. Shi, J. Du, Z. Zang, Z. Yao, M. Li, K. Sun, W. Hu, Y. Leng, X. Tang. Highly stable silica-wrapped Mn-doped CsPbCl3 quantum dots for bright white light-emitting devices. ACS Appl. Mater. Interfaces, 10, 43978-43986(2018).
[138] M. He, Y. Cheng, L. Shen, C. Shen, H. Zhang, W. Xiang, X. Liang. Mn-doped CsPbCl3 perovskite quantum dots (PQDs) incorporated into silica/alumina particles used for WLEDs. Appl. Surf. Sci., 448, 400-406(2018).
[139] H. Wu, S. Xu, H. Shao, L. Li, Y. Cui, C. Wang. Single component Mn-doped perovskite-related CsPb2ClxBr5-
[140] Y. Yang, Q. Li, Y. Liu, R. Cong, Y. Sun, J. Hou, M. Ge, J. Shi, F. Zhang, G. Zhao, N. Zhang, Y. Fang, N. Dai. “Magenta-emitting cesium lead halide nanocrystals encapsulated in dimethicone for white light-emitting diodes. ACS Appl. Nano Mater., 3, 4886-4892(2020).
[141] Y. Zhao, C. Xie, X. Zhang, K. Matras-Postolek, P. Yang. “Mn:CsPbBr3 nanoplatelets for bright white-emitting displays. ACS Appl. Nano Mater., 4, 6223-6230(2021).
[142] Y. H. Song, W. B. Kim, J. S. Yoo, S. H. Choi, W. K. Park, Y. Kim, W. S. Yang, D. H. Yoon, H. S. Jung. Design of orange-emitting CsPb0.77Mn0.23Cl3 perovskite film for application in optoelectronic device. Chem. Eng. J., 331, 803-808(2018).
[143] P. Li, Y. Duan, Y. Lu, A. Xiao, Z. Zeng, S. Xu, J. Zhang. Nanocrystalline structure control and tunable luminescence mechanism of Eu-doped CsPbBr3 quantum dot glass for WLEDs. Nanoscale, 12, 6630-6636(2020).
[144] G. Pan, X. Bai, W. Xu, X. Chen, D. Zhou, J. Zhu, H. Shao, Y. Zhai, B. Dong, L. Xu, H. Song. Impurity ions codoped cesium lead halide perovskite nanocrystals with bright white light emission toward ultraviolet-white light-emitting diode. ACS Appl. Mater. Interfaces, 10, 39040-39048(2018).
[145] H. Shao, X. Bai, H. Cui, G. Pan, P. Jing, S. Qu, J. Zhu, Y. Zhai, B. Dong, H. Song. White light emission in Bi3+/Mn2+ ion co-doped CsPbCl3 perovskite nanocrystals. Nanoscale, 10, 1023-1029(2018).
[146] C. Luo, W. Li, J. Fu, W. Yang. Constructing gradient energy levels to promote exciton energy transfer for photoluminescence controllability of all-inorganic perovskites and application in single-component WLEDs. Chem. Mater., 31, 5616-5624(2019).
[147] X. Huang, Q. Sun, B. Devakumar. Facile low-temperature solid-state synthesis of efficient blue-emitting Cs3Cu2I5 powder phosphors for solid-state lighting. Mater. Today Chem., 17, 100288(2020).
[148] X. Mo, T. Li, F. Huang, Z. Li, Y. Zhou, T. Lin, Y. Ouyang, X. Tao, C. Pan. Highly-efficient all-inorganic lead-free 1D CsCu2I3 single crystal for white-light emitting diodes and UV photodetection. Nano Energy, 81, 105570(2021).
[149] W. Liu, K. W. Ng, H. Lin, Z. Dai, J. Xu, S. Su, Z. Tang, S. Wang. Stable UV-pumped white light-emitting diodes based on anthracene-coated CsCu2I3. J. Phys. Chem. C, 125, 13076-13083(2021).
[150] T. Jun, K. Sim, S. Iimura, M. Sasase, H. Kamioka, J. Kim, H. Hosono. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv. Mater., 30, 1804547(2018).
[151] S. Zhao, Q. Mo, W. Cai, H. Wang, Z. Zang. Inorganic lead-free cesium copper chlorine nanocrystal for highly efficient and stable warm white light-emitting diodes. Photon. Res., 9, 187-192(2021).
[152] S. Zhao, S. Jiang, W. Cai, R. Li, Q. Mo, B. Wang, Z. Zang. Intrinsic white-light emission from low-dimensional perovskites for white-light-emitting diodes with high-color-rendering index. Cell Rep. Phys. Sci., 2, 100585(2021).
[153] M. Leng, Y. Yang, K. Zeng, Z. Chen, Z. Tan, S. Li, J. Li, B. Xu, D. Li, M. P. Hautzinger, Y. Fu, T. Zhai, L. Xu, G. Niu, S. Jin, J. Tang. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Adv. Funct. Mater., 28, 1704446(2018).
[154] Z. Z. Ma, Z. F. Shi, L. T. Wang, F. Zhang, D. Wu, D. W. Yang, X. Chen, Y. Zhang, C. X. Shan, X. J. Li. Water-induced fluorescence enhancement of lead-free cesium bismuth halide quantum dots by 130% for stable white light-emitting devices. Nanoscale, 12, 3637-3645(2020).
[155] Y. Jing, Y. Liu, X. Jiang, M. S. Molokeev, Z. Lin, Z. Xia. Sb3+ dopant and halogen substitution triggered highly efficient and tunable emission in lead-free metal halide single crystals. Chem. Mater., 32, 5327-5334(2020).
[156] S. Li, J. Luo, J. Liu, J. Tang. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications. J. Phys. Chem. Lett., 10, 1999-2007(2019).
[157] P. Vashishtha, G. V. Nutan, B. E. Griffith, Y. Fang, D. Giovanni, M. Jagadeeswararao, T. C. Sum, N. Mathews, S. G. Mhaisalkar, J. V. Hanna, T. White. Cesium copper iodide tailored nanoplates and nanorods for blue, yellow, and white emission. Chem. Mater., 31, 9003-9011(2019).
[158] P. Cheng, L. Sun, L. Feng, S. Yang, Y. Yang, D. Zheng, Y. Zhao, Y. Sang, R. Zhang, D. Wei, W. Deng, K. Han. Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium halide nanocrystals. Angew. Chem. Int. Ed., 131, 16233-16237(2019).
[159] L. Xie, B. Chen, F. Zhang, Z. Zhao, X. Wang, L. Shi, Y. Liu, L. Huang, R. Liu, B. Zou, Y. Wang. Highly luminescent and stable lead-free cesium copper halide perovskite powders for UV-pumped phosphor-converted light-emitting diodes. Photon. Res., 8, 768-775(2020).
[160] R. Lin, Q. Guo, Q. Zhu, Y. Zhu, W. Zheng, F. Huang. All-inorganic CsCu2I3 single crystal with high-PLQY (≈15.7%) intrinsic white-light emission via strongly localized 1D excitonic recombination. Adv. Mater., 31, 1905079(2019).
[161] R. Fan, S. Fang, C. Liang, Z. Liang, H. Zhong. Controllable one-step doping synthesis for the white-light emission of cesium copper iodide perovskites. Photon. Res., 9, 694-700(2021).
[162] Z. Yang, Z. Jiang, X. Liu, X. Zhou, J. Zhang, W. Li. Bright blue light-emitting doped cesium bromide nanocrystals: alternatives of lead-free perovskite nanocrystals for white LEDs. Adv. Opt. Mater., 7, 1900108(2019).
[163] Z. Li, Z. Rao, Q. Li, L. Zhou, X. Zhao, X. Gong. Cs2Zr1-
[164] Z. Tan, M. Hu, G. Niu, Q. Hu, J. Li, M. Leng, L. Gao, J. Tang. Inorganic antimony halide hybrids with broad yellow emissions. Sci. Bull., 64, 904-909(2019).
[165] G. Xiong, L. Yuan, Y. Jin, H. Wu, Z. Li, B. Qu, G. Ju, L. Chen, S. Yang, Y. Hu. Aliovalent doping and surface grafting enable efficient and stable lead-free blue-emitting perovskite derivative. Adv. Opt. Mater., 8, 2000779(2020).
[166] J. Li, Z. Tan, M. Hu, C. Chen, J. Luo, S. Li, L. Gao, Z. Xiao, G. Niu, J. Tang. “Antimony doped Cs2SnCl6 with bright and stable emission. Front. Optoelectron., 12, 352-364(2019).
[167] H. Shao, X. Wu, J. Zhu, W. Xu, L. Xu, B. Dong, J. Hu, B. Dong, X. Bai, H. Cui, H. Song. Mn2+ ions doped lead-free zero-dimensional K3SbCl6 perovskite nanocrystals towards white light emitting diodes. Chem. Eng. J., 413, 127415(2021).
[168] A. Karmakar, G. M. Bernard, A. Meldrum, A. O. Oliynyk, V. K. Michaelis. Tailorable indirect to direct band-gap double perovskites with bright white-light emission: decoding chemical structure using solid-state NMR. J. Am. Chem. Soc., 142, 10780-10793(2020).
[169] Z. Tan, J. Li, C. Zhang, Z. Li, Q. Hu, Z. Xiao, T. Kamiya, H. Hosono, G. Niu, E. Lifshitz, Y. Cheng, J. Tang. Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Adv. Funct. Mater., 28, 1801131(2018).
[170] N. R. Wolf, B. A. Connor, A. H. Slavney, H. I. Karunadasa. Doubling the stakes: the promise of halide double perovskites. Angew. Chem. Int. Ed., 60, 16264-16278(2021).
[171] J. H. Wei, J. F. Liao, X. D. Wang, L. Zhou, Y. Jiang, D. B. Kuang. All-inorganic lead-free heterometallic Cs4MnBi2Cl12 perovskite single crystal with highly efficient orange emission. Matter, 3, 892-903(2020).
[172] B. Zhou, Z. Liu, S. Fang, H. Zhong, B. Tian, Y. Wang, H. Li, H. Hu, Y. Shi. Efficient white photoluminescence from self-trapped excitons in Sb3+/Bi3+-codoped Cs2NaInCl6 double perovskites with tunable dual-emission. ACS Energy Lett., 6, 3343-3351(2021).
[173] D. Manna, T. K. Das, A. Yella. Tunable and stable white light emission in Bi3+-alloyed Cs2AgInCl6 double perovskite nanocrystals. Chem. Mater., 31, 10063-10070(2019).
[174] J. Luo, X. Wang, S. Li, J. Liu, Y. Guo, G. Niu, L. Yao, Y. Fu, L. Gao, Q. Dong, C. Zhao, M. Leng, F. Ma, W. Liang, L. Wang, S. Jin, J. Han, L. Zhang, J. Etheridge, J. Wang, Y. Yan, E. H. Sargent, J. Tang. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 563, 541-545(2018).
[175] S. Li, Z. Shi, F. Zhang, L. Wang, Z. Ma, D. Wu, D. Yang, X. Chen, Y. Tian, Y. Zhang, C. Shan, X. Li. Ultrastable lead-free double perovskite warm-white light-emitting devices with a lifetime above 1000 hours. ACS Appl. Mater. Interfaces, 12, 46330-46339(2020).
[176] M. Hu, J. Luo, S. Li, J. Liu, J. Li, Z. Tan, G. Niu, Z. Wang, J. Tang. Broadband emission of double perovskite Cs2Na0.4Ag0.6In0.995Bi0.005Cl6:Mn2+ for single-phosphor white-light-emitting diodes. Opt. Lett., 44, 4757-4760(2019).
[177] W. Zheng, R. Sun, Y. Liu, X. Wang, N. Liu, Y. Ji, L. Wang, H. Liu, Y. Zhang. Excitation management of lead-free perovskite nanocrystals through doping. ACS Appl. Mater. Interfaces, 13, 6404-6410(2021).
[178] C. Y. Wang, P. Liang, R. J. Xie, Y. Yao, P. Liu, Y. Yang, J. Hu, L. Shao, X. W. Sun, F. Kang, G. Wei. Highly efficient lead-free (Bi,Ce)-codoped Cs2Ag0.4Na0.6InCl6 double perovskites for white light-emitting diodes. Chem. Mater., 32, 7814-7821(2020).
[179] H. Yin, Q. Kong, R. Zhang, D. Zheng, B. Yang, K. Han. Lead-free rare-earth double perovskite Cs2AgIn1−
[180] M. Cong, B. Yang, F. Hong, T. Zheng, Y. Sang, J. Guo, S. Yang, K. Han. Self-trapped exciton engineering for white-light emission in colloidal lead-free double perovskite nanocrystals. Sci. Bull., 65, 1078-1084(2020).
[181] Q. Hu, G. Niu, Z. Zheng, S. Li, Y. Zhang, H. Song, T. Zhai, J. Tang. Tunable color temperatures and efficient white emission from Cs2Ag1-
[182] X. Liu, X. Xu, B. Li, L. Yang, Q. Li, H. Jiang, D. Xu. Tunable dual-emission in monodispersed Sb3+/Mn2+ codoped Cs2NaInCl6 perovskite nanocrystals through an energy transfer process. Small, 16, 2002547(2020).
[183] J. E. Jeong, J. H. Park, C. H. Jang, M. H. Song, H. Y. Woo. Multifunctional charge transporting materials for perovskite light-emitting diodes. Adv. Mater., 32, 2002176(2020).
[184] W. Zhou, Y. Zhao, X. Zhou, R. Fu, Q. Li, Y. Zhao, K. Liu, D. Yu, Q. Zhao. Light-independent ionic transport in inorganic perovskite and ultrastable Cs-based perovskite solar cells. J. Phys. Chem. Lett., 8, 4122-4128(2017).
[185] J. Xing, Q. Wang, Q. Dong, Y. Yuan, Y. Fang, J. Huang. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. Phys. Chem. Chem. Phys., 18, 30484-30490(2016).
[186] H. Cho, Y. H. Kim, C. Wolf, H. D. Lee, T. W. Lee. Improving the stability of metal halide perovskite materials and light-emitting diodes. Adv. Mater., 30, 1704587(2018).
[187] E. P. Yao, Z. Yang, L. Meng, P. Sun, S. Dong, Y. Yang, Y. Yang. High-brightness blue and white LEDs based on inorganic perovskite nanocrystals and their composites. Adv. Mater., 29, 1606859(2017).
[188] C. Y. Huang, S. J. Huang, M. H. M. Liu. Hybridization of CsPbBr1.5I1.5 perovskite quantum dots with 9,9-dihexylfluorene co-oligomer for white electroluminescence. Org. Electron., 44, 6-10(2017).
[189] J. Mao, H. Lin, F. Ye, M. Qin, J. M. Burkhartsmeyer, H. Zhang, X. Lu, K. S. Wong, W. C. H. Choy. All-perovskite emission architecture for white light-emitting diodes. ACS Nano, 12, 10486-10492(2018).
[190] Y. Wang, L. Yang, H. Chen, C. Liu, W. Liu, H. Xu, C. Zhang, Z. Wang, Y. Liu. White LED based on CsPbBr3 nanocrystal phosphors via a facile two-step solution synthesis route. Mater. Res. Bull., 104, 48-52(2018).
[191] S. Hou, M. K. Gangishetty, Q. Quan, D. N. Congreve. Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule, 2, 2421-2433(2018).
[192] C. Wang, D. Xue, X. Shen, H. Wu, Y. Zhang, H. Cui, W. W. Yu. White light-emitting devices based on ZnCdS/ZnS and perovskite nanocrystal heterojunction. Nanotechnology, 30, 465201(2019).
[193] S. Chen, C. Chen, C. Bao, M. Mujahid, Y. Li, P. Chen, Y. Duan. White light-emitting devices based on inorganic perovskite and organic materials. Molecules, 24, 800(2019).
[194] R. Sun, P. Lu, D. Zhou, W. Xu, N. Ding, H. Shao, Y. Zhang, D. Li, N. Wang, X. Zhuang, B. Dong, X. Bai, H. Song. Samarium-doped metal halide perovskite nanocrystals for single-component electroluminescent white light-emitting diodes. ACS Energy Lett., 5, 2131-2139(2020).
[195] R. R. Rad, A. F. Gualdrón-Reyes, S. Masi, B. A. Ganji, N. Taghavinia, S. Gené-Marimon, E. Palomares, I. Mora-Seró. Tunable carbon-CsPbI3 quantum dots for white LEDs. Adv. Opt. Mater., 9, 2001508(2020).
[196] S. Zhang, L. Yuan, H. Liu, G. Zhou, W. Ding, Z. Qin, X. Li, S. Wang. Tunable white light-emitting devices based on unilaminar high-efficiency Zn2+-doped blue CsPbBr3 quantum dots. J. Phys. Chem. Lett., 12, 8507-8512(2021).
[197] J. Chen, J. Wang, X. Xu, J. Li, J. Song, S. Lan, S. Liu, B. Cai, B. Han, J. T. Precht, D. Ginger, H. Zeng. Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nat. Photonics, 15, 238-244(2020).
[198] Z. Ma, Z. Shi, D. Yang, Y. Li, F. Zhang, L. Wang, X. Chen, D. Wu, Y. Tian, Y. Zhang, L. Zhang, X. Li, C. Shan. High color-rendering index and stable white light-emitting diodes by assembling two broadband emissive self-trapped excitons. Adv. Mater., 33, 2001367(2021).
[199] S. Liu, Y. Yue, X. Zhang, C. Wang, G. Yang, D. Zhu. A controllable and reversible phase transformation between all-inorganic perovskites for white light emitting diodes. J. Mater. Chem. C, 8, 8374-8379(2020).
[200] H. Chen, L. Zhu, C. Xue, P. Liu, X. Du, K. Wen, H. Zhang, L. Xu, C. Xiang, C. Lin, M. Qin, J. Zhang, T. Jiang, C. Yi, L. Cheng, C. Zhang, P. Yang, M. Niu, W. Xu, J. Lai, Y. Cao, J. Chang, H. Tian, Y. Jin, X. Lu, L. Jiang, N. Wang, W. Huang, J. Wang. Efficient and bright warm-white electroluminescence from lead-free metal halides. Nat. Commun., 12, 1421(2021).
[201] Y. Zhang, Z. Zhang, W. Yu, Y. He, Z. Chen, L. Xiao, J. J. Shi, X. Guo, S. Wang, B. Qu. Lead-free double perovskite Cs2AgIn0.9Bi0.1Cl6 quantum dots for white light-emitting diodes. Adv. Sci., 2, 2102895(2021).
[202] A. Ren, H. Wang, W. Zhang, J. Wu, Z. Wang, R. V. Penty, I. H. White. Emerging light-emitting diodes for next-generation data communications. Nat. Electron., 4, 559-572(2021).
[203] I. Dursun, C. Shen, M. R. Parida, J. Pan, S. P. Sarmah, D. Priante, N. Alyami, J. Liu, M. I. Saidaminov, M. S. Alias, A. L. Abdelhady, T. K. Ng, O. F. Mohammed, B. S. Ooi, O. M. Bakr. Perovskite nanocrystals as a color converter for visible light communication. ACS Photon., 3, 1150-1156(2016).
[204] S. Mei, X. Liu, W. Zhang, R. Liu, L. Zheng, R. Guo, P. Tian. High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication. ACS Appl. Mater. Interfaces, 10, 5641-5648(2018).
[205] Z. Wang, Z. Wei, Y. Cai, L. Wang, M. Li, P. Liu, R. Xie, L. Wang, G. Wei, H. Y. Fu. Encapsulation-enabled perovskite-PMMA films combining a micro-LED for high-speed white-light communication. ACS Appl. Mater. Interfaces, 13, 54143-54151(2021).
[206] Z. Ma, X. Li, C. Zhang, L. Turyanska, S. Lin, X. Xi, J. Li, T. Hu, J. Wang, A. Patanè, L. Zhao. “CsPb(Br/I)3 perovskite nanocrystals for hybrid GaN-based high-bandwidth white light-emitting diodes. ACS Appl. Nano Mater., 4, 8383-8389(2021).
[207] S. Zhao, C. Chen, W. Cai, R. Li, H. Li, S. Jiang, M. Liu, Z. Zang. Efficiently luminescent and stable lead-free Cs3Cu2Cl5@silica nanocrystals for white light-emitting diodes and communication. Adv. Opt. Mater., 9, 2100307(2021).
[208] B. Wang, C. Chen, X. Yang, W. Cai, S. Zhao, R. Li, W. Ma, J. Chen, Z. Zang. Pressure-assisted cooling to grow ultra-stable Cs3Cu2L5 and CsCu2L3 single crystals for solid-state lighting and visible light communication. EcoMat, 4, e12148(2022).
Set citation alerts for the article
Please enter your email address