• Photonics Research
  • Vol. 12, Issue 5, 969 (2024)
Peijie Wang1、2、†, Yufeng Pan1、2、†, Jiangshan Zhang3, Jie Zhai1、2, Deming Liu1、2, and Ping Lu1、2、*
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center of Next Generation Internet Access System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Optics Valley Laboratory, Wuhan 430074, China
  • 3Department of Electronics and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1364/PRJ.519946 Cite this Article Set citation alerts
    Peijie Wang, Yufeng Pan, Jiangshan Zhang, Jie Zhai, Deming Liu, Ping Lu. Miniaturized and highly sensitive fiber-optic Fabry–Perot sensor for mHz infrasound detection[J]. Photonics Research, 2024, 12(5): 969 Copy Citation Text show less
    References

    [1] Z. Qu, P. Lu, Y. Li. Low-frequency acoustic Fabry–Pérot fiber sensor based on a micromachined silicon nitride membrane. Chin. Opt. Lett., 18, 101201(2020).

    [2] Y. Xia, J. T. Liu, X. Cui. Abnormal infrasound signals before 92M≧7.0 worldwide earthquakes during 2002–2008. J. Asian Earth Sci., 41, 434-441(2011).

    [3] B. G. Gorshkov, A. E. Alekseev, M. A. Taranov. Low noise distributed acoustic sensor for seismology applications. Appl. Opt., 61, 8308-8316(2022).

    [4] E. F. Williams, M. R. Fernández-Ruiz, R. Magalhaes. Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nat. Commun., 10, 5778(2019).

    [5] N. J. Lindsey, E. R. Martin, D. S. Dreger. Fiber-optic network observations of earthquake wavefields. Geophys. Res. Lett., 44, 11792-11799(2017).

    [6] M. A. Garces. Infrasonic signals generated by volcanic eruptions. IEEE International Symposium on Geoscience and Remote Sensing, 1189-1191(2000).

    [7] X. Leng, D. Liu, F. Wei. Debris flows monitoring and localization using infrasonic signals. J. Mt. Sci., 14, 1279-1291(2017).

    [8] A. Schimmel, J. Hübl. Automatic detection of debris flows and debris floods based on a combination of infrasound and seismic signals. Landslides, 13, 1181-1196(2016).

    [9] J. B. Johnson, J. F. Anderson, H. P. Marshall. Snow avalanche detection and source constraints made using a networked array of infrasound sensors. J. Geophys. Res. Earth Surf., 126, e2020JF005741(2021).

    [10] T. Thüring, M. Schoch, A. van Herwijnen. Robust snow avalanche detection using supervised machine learning with infrasonic sensor arrays. Cold Reg. Sci. Technol., 111, 60-66(2015).

    [11] X. Cui, Y. Yan, Y. Ma. Localization of CO2 leakage from transportation pipelines through low frequency acoustic emission detection. Sens. Actuators A Phys., 237, 107-118(2016).

    [12] F. Tanimola, D. Hill. Distributed fibre optic sensors for pipeline protection. J. Nat. Gas Sci. Eng., 1, 134-143(2009).

    [13] X. Zhang, F. Zhang, S. Jiang. Short cavity DFB fiber laser based vector hydrophone for low frequency signal detection. Photonic Sens., 7, 325-328(2017).

    [14] W. Lv, M. Pang, Q. Shi. Study on a fiber optic gradient hydrophone based on interferometer. Proc. SPIE, 7156, 71561E(2008).

    [15] J. G. V. Teixeira, I. T. Leite, S. Silva. Advanced fiber-optic acoustic sensors. Photonic Sens., 4, 198-208(2014).

    [16] E. A. Silber, D. C. Bowman, M. R. Giannone. Detection of the large surface explosion coupling experiment by a sparse network of balloon-borne infrasound sensors. Remote Sens., 15, 542(2023).

    [17] W. Jo, O. C. Akkaya, O. Solgaard. Miniature fiber acoustic sensors using a photonic-crystal membrane. Opt. Fiber Technol., 19, 785-792(2013).

    [18] J. Grangeon, P. Lesage. A robust, low-cost and well-calibrated infrasound sensor for volcano monitoring. J. Volcanol. Geoth. Res., 387, 106668(2019).

    [19] Y. Chen, H. Wan, Y. Lu. An air-pressure and acoustic fiber sensor based on graphene-oxide Fabry-Perot interferometer. Opt. Fiber Technol., 68, 102754(2022).

    [20] Y. Pan, P. Lu, L. Cheng. Miniaturized and highly-sensitive fiber-optic photoacoustic gas sensor based on an integrated tuning fork by mechanical processing with dual-prong differential measurement. Photoacoustics, 34, 100573(2023).

    [21] H. Wei, Z. Wu, K. Sun. Two-photon 3D printed spring-based Fabry–Pérot cavity resonator for acoustic wave detection and imaging. Photonics Res., 11, 780-786(2023).

    [22] S. E. Hayber, T. E. Tabaru, S. Keser. A simple, high sensitive fiber optic microphone based on cellulose triacetate diaphragm. J. Lightwave Technol., 36, 5650-5655(2018).

    [23] J. Wang, F. Ai, Q. Sun. Diaphragm-based optical fiber sensor array for multipoint acoustic detection. Opt. Express, 26, 25293-25304(2018).

    [24] J. Ma, Y. He, X. Bai. Flexible microbubble-based Fabry–Pérot cavity for sensitive ultrasound detection and wide-view photoacoustic imaging. Photonics Res., 8, 1558-1565(2020).

    [25] X. Qi, S. Wang, J. Jiang. Study on the sensitization effect of flywheel-like diaphragm on fiber-optic Fabry-Perot acoustic sensor. IEEE Access, 8, 99286-99293(2020).

    [26] Y. Pan, J. Zhao, P. Lu. All-optical light-induced thermoacoustic spectroscopy for remote and non-contact gas sensing. Photoacoustics, 27, 100389(2022).

    [27] C. Li, H. Qi, X. Han. Ultrahigh-speed phase demodulation of a Fabry-Perot sensor based on fiber array parallel spectral detection. Opt. Lett., 49, 714-717(2024).

    [28] P. Fan, W. Yan, P. Lu. High sensitivity fiber-optic Michelson interferometric low-frequency acoustic sensor based on a gold diaphragm. Opt. Express, 28, 25238-25249(2020).

    [29] B. Liu, J. Lin, H. Liu. Extrinsic Fabry-Perot fiber acoustic pressure sensor based on large-area silver diaphragm. Microelectron. Eng., 166, 50-54(2016).

    [30] F. Xu, J. Shi, K. Gong. Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaphragm. Opt. Lett., 39, 2838-2840(2014).

    [31] F. Guo, T. Fink, M. Han. High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm. Opt. Lett., 37, 1505-1507(2012).

    [32] H. Li, X. Wang, D. Li. MEMS-on-fiber sensor combining silicon diaphragm and supporting beams for on-line partial discharges monitoring. Opt. Express, 28, 29368-29376(2020).

    [33] W. Wang, N. Wu, Y. Tian. Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm. Opt. Express, 18, 9006-9014(2010).

    [34] X. Fu, P. Lu, J. Zhang. Micromachined extrinsic Fabry-Pérot cavity for low-frequency acoustic wave sensing. Opt. Express, 27, 24300-24310(2019).

    [35] Z. Gong, K. Chen, X. Zhou. High-sensitivity Fabry-Perot interferometric acoustic sensor for low-frequency acoustic pressure detections. J. Lightwave Technol., 35, 5276-5279(2017).

    [36] S. Wang, J. Zhang, H. Xu. An infrasound sensor based on extrinsic fiber-optic Fabry–Perot interferometer structure. IEEE Photonics Technol. Lett., 28, 1264-1267(2016).

    [37] W. Ni, P. Lu, X. Fu. Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing. Opt. Express, 26, 20758-20767(2018).

    [38] J. Ma, H. Xuan, H. L. Ho. Fiber-optic Fabry–Pérot acoustic sensor with multilayer graphene diaphragm. IEEE Photonics Technol. Lett., 25, 932-935(2013).

    [39] H. Moradi, P. Parvin, A. Ojaghloo. Ultrasensitive fiber optic Fabry Pérot acoustic sensor using phase detection. Measurement, 172, 108953(2021).

    [40] F. Yu, Q. Liu, X. Gan. Ultrasensitive pressure detection of few-layer MoS2. Adv. Mater., 29, 1603266(2017).

    [41] S. Li, Y. Zhang, C. Ma. MEMS optical fiber F–P hydrophone based on corrugated PET diaphragm. IEEE Trans. Instrum. Meas., 72, 7001710(2023).

    [42] B. Liu, H. Zhou, L. Liu. An optical fiber Fabry-Perot microphone based on corrugated silver diaphragm. IEEE Trans. Instrum. Meas., 67, 1994-2000(2018).

    [43] W. Yang, L. Jin, Y. Liang. Corrugated-diaphragm based fiber laser hydrophone with sub-100 μPa/Hz1/2 resolution. Sensors-Basel, 17, 1219(2017).

    [44] F. Wang, Z. Shao, J. Xie. Extrinsic Fabry–Pérot underwater acoustic sensor based on micromachined center-embossed diaphragm. J. Lightwave Technol., 32, 4628-4636(2014).

    [45] O. Marcillo, J. B. Johnson, D. Hart. Implementation, characterization, and evaluation of an inexpensive low-power low-noise infrasound sensor based on a micromachined differential pressure transducer and a mechanical filter. J. Atmos. Ocean. Tech., 29, 1275-1284(2012).

    [46] P. Zhang, S. Wang, J. Jiang. Mechanical filter-based differential pressure fiber-optic Fabry-Perot infrasound sensor. IEEE Photonics J., 13, 6800110(2021).

    [47] W. Zhang, P. Lu, Z. Qu. High sensitivity and high stability dual Fabry-Perot interferometric fiber-optic acoustic sensor based on sandwich-structure composite diaphragm. IEEE Photonics J., 13, 710113(2021).

    [48] Y. P. Li, G. P. Zhang, W. Wang. On interface strengthening ability in metallic multilayers. Scr. Mater., 57, 117-120(2007).

    [49] S. Lorenzo, Y. Wong, O. Solgaard. Optical fiber photonic crystal hydrophone for cellular acoustic sensing. IEEE Access, 9, 42305-42313(2021).

    [50] X. Fu, P. Lu, W. Ni. Phase demodulation of interferometric fiber sensor based on fast Fourier analysis. Opt. Express, 25, 21094-21106(2017).

    [51] K. Chen, Z. Yu, Q. Yu. Fast demodulated white-light interferometry-based fiber-optic Fabry-Perot cantilever microphone. Opt. Lett., 43, 3417-3420(2018).

    Peijie Wang, Yufeng Pan, Jiangshan Zhang, Jie Zhai, Deming Liu, Ping Lu. Miniaturized and highly sensitive fiber-optic Fabry–Perot sensor for mHz infrasound detection[J]. Photonics Research, 2024, 12(5): 969
    Download Citation