• Chinese Journal of Lasers
  • Vol. 51, Issue 9, 0907014 (2024)
Lingbing Li1、2, Lidan Fu2、3, Xiaojing Shi2, Yuanda Wang4, Zhijun Wang1、4、5, and Zhenhua Hu2、5、*
Author Affiliations
  • 1The Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
  • 2CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
  • 3School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
  • 5National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, China
  • show less
    DOI: 10.3788/CJL231471 Cite this Article Set citation alerts
    Lingbing Li, Lidan Fu, Xiaojing Shi, Yuanda Wang, Zhijun Wang, Zhenhua Hu. Clinical Application of Computer‐Assisted Second Near‐Infrared Window Fluorescence Angiography in Surgical Creation of Hemodialysis Access[J]. Chinese Journal of Lasers, 2024, 51(9): 0907014 Copy Citation Text show less
    References

    [1] Shi X J, Zhang Z, Zhang Z Y et al. Near-infrared window II fluorescence image-guided surgery of high-grade gliomas prolongs the progression-free survival of patients[J]. IEEE Transactions on Bio-Medical Engineering, 69, 1889-1900(2022).

    [2] Bajwa A, Wesolowski R, Patel A et al. Assessment of tissue perfusion in the lower limb: current methods and techniques under development[J]. Circulation: Cardiovascular Imaging, 7, 836-843(2014).

    [3] Shan X F, Ouyang S Y, Cai Z G et al. Evaluation of foot perfusion after fibula flap surgery[J]. The Journal of Craniofacial Surgery, 25, 1346-1347(2014).

    [4] Gonzalez T V, Bookwalter C A, Foley T A et al. Multimodality imaging evaluation of arteriovenous fistulas and grafts: a clinical practice review[J]. Cardiovascular Diagnosis and Therapy, 13, 196-211(2023).

    [5] Ritter Z, Zámbó K, Balogh P et al. In situ lymphoma imaging in a spontaneous mouse model using the Cerenkov luminescence of F-18 and Ga-67 isotopes[J]. Scientific Reports, 11, 24002(2021).

    [6] Hu Z H, Fang C, Li B et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows[J]. Nature Biomedical Engineering, 4, 259-271(2020).

    [7] Hong G S, Lee J C, Jha A et al. Near-infrared II fluorescence for imaging hindlimb vessel regeneration with dynamic tissue perfusion measurement[J]. Circulation: Cardiovascular Imaging, 7, 517-525(2014).

    [8] Hong G S, Lee J C, Robinson J T et al. Multifunctional in vivo vascular imaging using near-infrared II fluorescence[J]. Nature Medicine, 18, 1841-1846(2012).

    [9] Qiu Y, Shen Z Y, Ding H Z et al. Research advances of NIR‐II cyanine dyes in disease applications[J]. Chinese Journal of Lasers, 51, 0307105(2024).

    [10] Chang B S, Li D F, Ren Y et al. A phosphorescent probe for in vivo imaging in the second near-infrared window[J]. Nature Biomedical Engineering, 6, 629-639(2022).

    [11] Guo X Y, Li C J, Jia X H et al. NIR-II fluorescence imaging-guided colorectal cancer surgery targeting CEACAM5 by a nanobody[J]. EBioMedicine, 89, 104476(2023).

    [12] Qu Q J, Nie H L, Hou S et al. Visualisation of pelvic autonomic nerves using NIR-II fluorescence imaging[J]. European Journal of Nuclear Medicine and Molecular Imaging, 49, 4752-4754(2022).

    [13] Yang J Y, He S Q, Hu Z H et al. In vivo multifunctional fluorescence imaging using liposome-coated lanthanide nanoparticles in near-infrared-II/IIa/IIb windows[J]. Nano Today, 38, 101120(2021).

    [14] Vardi M, Nini A. Near-infrared spectroscopy for evaluation of peripheral vascular disease. A systematic review of literature[J]. European Journal of Vascular and Endovascular Surgery, 35, 68-74(2008).

    [15] Cao C G, Deng S H, Wang B S et al. Intraoperative near-infrared II window fluorescence imaging-assisted nephron-sparing surgery for complete resection of cystic renal masses[J]. Clinical and Translational Medicine, 11, e604(2021).

    [16] Cao C G, Jin Z P, Shi X J et al. First clinical investigation of near-infrared window IIa/IIb fluorescence imaging for precise surgical resection of gliomas[J]. IEEE Transactions on Bio-Medical Engineering, 69, 2404-2413(2022).

    [17] Zhong L Z, Dong D, Fang X L et al. A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: a multicentre study[J]. EBioMedicine, 70, 103522(2021).

    [18] Cai M S, Zhang Z Y, Shi X J et al. Non-negative iterative convex refinement approach for accurate and robust reconstruction in cerenkov luminescence tomography[J]. IEEE Transactions on Medical Imaging, 39, 3207-3217(2020).

    [19] Wei Z W, Yang S, Wu M et al. Recent progress in near-infrared-II fluorescence imaging probes for fluorescence surgical navigation[J]. Chinese Journal of Lasers, 49, 0507102(2022).

    [20] Liu J H, Yang Y Q, Ma R et al. Research progress of organic NIR-II fluorescent probes[J]. Chinese Journal of Lasers, 50, 2107101(2023).

    [21] Qiu J L, Fu Z, Jin H L et al. Near-infrared three-dimensional imaging system and recognition algorithm for subcutaneous blood vessels[J]. Acta Optica Sinica, 43, 0917001(2023).

    Lingbing Li, Lidan Fu, Xiaojing Shi, Yuanda Wang, Zhijun Wang, Zhenhua Hu. Clinical Application of Computer‐Assisted Second Near‐Infrared Window Fluorescence Angiography in Surgical Creation of Hemodialysis Access[J]. Chinese Journal of Lasers, 2024, 51(9): 0907014
    Download Citation