• Photonics Research
  • Vol. 12, Issue 5, 986 (2024)
Yong Pan*, Lijie Wu, Yuan Zhang, Yihao Zhang, Jie Xu, Haixia Xie, and Jianguo Cao
Author Affiliations
  • College of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China
  • show less
    DOI: 10.1364/PRJ.515120 Cite this Article Set citation alerts
    Yong Pan, Lijie Wu, Yuan Zhang, Yihao Zhang, Jie Xu, Haixia Xie, Jianguo Cao. Perovskite quantum laser with enhanced population inversion driven by plasmon-induced hot electron transfer under potential shift polarization conditions[J]. Photonics Research, 2024, 12(5): 986 Copy Citation Text show less
    References

    [1] C. H. Cho, C. O. Aspetti, J. Park. Silicon coupled with plasmon nanocavities generates bright visible hot luminescence. Nat. Photonics, 7, 285-289(2013).

    [2] K. Y. Jeong, M. S. Hwang, J. Kim. Recent progress in nanolaser technology. Adv. Mater., 32, 2001996(2020).

    [3] R. M. Ma, R. F. Oulton. Applications of nanolasers. Nat. Nanotechnol., 14, 12-22(2019).

    [4] Y. Pan, Y. Zhang, J. G. Cao. Threshold reducing via micro rhombic lasing misalignment step-cavity with a simple and universal use. Adv. Opt. Mater., 12, 2301877(2023).

    [5] Y. L. Chen, Y. H. Hu, X. Yang. Plasmon-enhanced fluorescence of gold nanoparticle/graphene quantum dots for detection of Cr3+ ions. Photonics Res., 11, 1781-1790(2023).

    [6] Z. Guo, Y. Wan, M. Yang. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science, 356, 59-62(2017).

    [7] C. H. Cho, C. O. Aspetti, M. E. Turk. Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons. Nat. Mater., 10, 669-675(2011).

    [8] X. Y. Huang, H. B. Li, C. F. Zhang. Efficient plasmon-hot electron conversion in Ag–CsPbBr3 hybrid nanocrystals. Nat. Commun., 10, 1163(2019).

    [9] A. F. Bravo, D. Wang, E. S. Barnard. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. Nat. Mater., 18, 1172-1176(2019).

    [10] X. Yang, P. N. Ni, P. T. Jing. Room temperature electrically driven ultraviolet plasmonic lasers. Adv. Opt. Mater., 7, 1801681(2019).

    [11] Y. L. Chen, Y. H. Hu, L. Ma. Self-assembled CsPbBr3 quantum dots with wavelength-tunable photoluminescence for efficient active jamming. Nanoscale, 14, 17900(2022).

    [12] Y. Pan, L. Huang, W. Sun. Invisibility cloak technology of anti-infrared detection materials prepared using CoGaZnSe multilayer nanofilms. ACS Appl. Mater. Interfaces, 13, 40145-40154(2021).

    [13] Y. Pan, L. Wang, X. Su. Nanolasers incorporating CoxGa0.6–x-ZnSe0.4 nanoparticle arrays with wavelength tunability at room temperature. ACS Appl. Mater. Interfaces, 13, 6975-6986(2021).

    [14] Y. Pan, L. Wang, Y. Zhang. Multi-wavelength laser emission by hot-carriers transfers in perovskite-graphene-chalcogenide quantum dots. Adv. Opt. Mater., 10, 2201044(2022).

    [15] D. Xing, C. Lin, P. Won. Metallic nanowire coupled CsPbBr3 quantum dots plasmonic nanolaser. Adv. Funct. Mater., 31, 2102375(2021).

    [16] A. P. Schlaus, M. S. Spencer, X. Y. Zhu. Light–matter interaction and lasing in lead halide perovskites. Acc. Chem. Res., 52, 2950-2959(2019).

    [17] X. F. Fan, W. T. Zheng, D. J. Singh. Light scattering and surface plasmons on small spherical particles. Light Sci. Appl., 3, e179(2014).

    [18] S. Sheikholeslami, Y. Jun, P. K. Jain. Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Nano Lett., 10, 2655-2660(2010).

    [19] A. E. Miroshnichenko. Fano resonances in nanoscale structures. Rev. Mod. Phys., 82, 2257-2298(2010).

    [20] H. M. Zhang, S. F. Chen, D. W. Zhao. Surface-plasmon-enhanced microcavity organic light-emitting diodes. Opt. Express, 22, A1776-A1782(2015).

    [21] Y. Liu, Q. Chen, D. A. Cullen. Efficient hot electron transfer from small Au nanoparticles. Nano Lett., 20, 4322-4329(2020).

    [22] K. Wu, J. Chen, J. R. Mcbride. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science, 349, 632(2015).

    [23] R. F. Oulton, V. J. Sorger, T. Zentgraf. Plasmon lasers at deep subwavelength scale. Nature, 461, 629-632(2009).

    [24] M. Khajavikhan, A. Simic, M. Katz. Thresholdless nanoscale coaxial lasers. Nature, 482, 204-207(2012).

    [25] S. Wang, H. Z. Chen, R. M. Ma. High performance plasmonic nanolasers with external quantum efficiency exceeding 10%. Nano Lett., 18, 7942-7948(2018).

    [26] D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin. Lasing at the nanoscale: coherent emission of surface plasmons by an electrically driven nanolaser. Nanophotonics, 9, 3965-3975(2020).

    [27] A. Fattah, A. M. Livani, E. Norouzi. Design and simulation of an electrically pumped SPASER. Opt. Mater., 129, 112530(2022).

    [28] J. Y. Sun, D. H. Nguyen, J. M. Liu. On-chip monolithically integrated ultraviolet low-threshold plasmonic metal–semiconductor heterojunction nanolasers. Adv. Sci., 10, 2301493(2023).

    [29] R. H. Fowler. The analysis of photoelectric sensitivity curves for clean metals at various temperatures. Phys. Rev., 38, 45-56(1931).

    [30] Y. Liang, C. Li, Y. Huang. Plasmonic nanolasers in on-chip light sources: prospects and challenges. ACS Nano, 14, 14375-14390(2020).

    [31] G. Li, B. Zhou, Z. Hou. Transfer printing of perovskite whispering gallery mode laser cavities by thermal release tape. Nanoscale Res. Lett., 17, 8(2022).

    [32] G. Kumar, M. Sarathbavan, Y. Sivalingam. Mechanism of analog bipolar resistive switching and work function in Au/Na0.5Bi0.5TiO3/Pt heterostructure thin films. Mater. Chem. Phys., 257, 123765(2021).

    [33] R. Chen, X. Su, J. Wang. The roles of surface defects in MAPbBr3 and multi-structures in MAPbI3. Opt. Mater., 122, 111600(2021).

    Yong Pan, Lijie Wu, Yuan Zhang, Yihao Zhang, Jie Xu, Haixia Xie, Jianguo Cao. Perovskite quantum laser with enhanced population inversion driven by plasmon-induced hot electron transfer under potential shift polarization conditions[J]. Photonics Research, 2024, 12(5): 986
    Download Citation