• Nano-Micro Letters
  • Vol. 16, Issue 1, 172 (2024)
Birhanu Bayissa Gicha1, Lemma Teshome Tufa1, Njemuwa Nwaji2, Xiaojun Hu3, and Jaebeom Lee4、*
Author Affiliations
  • 1Research Institute of Materials Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
  • 2Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
  • 3School of Life Sciences, Shanghai University, 200444 Shanghai, People’s Republic of China
  • 4Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
  • show less
    DOI: 10.1007/s40820-024-01385-6 Cite this Article
    Birhanu Bayissa Gicha, Lemma Teshome Tufa, Njemuwa Nwaji, Xiaojun Hu, Jaebeom Lee. Advances in All-Solid-State Lithium–Sulfur Batteries for Commercialization[J]. Nano-Micro Letters, 2024, 16(1): 172 Copy Citation Text show less
    References

    [1] Y.J. Amuda, S. Hassan, U. Subramaniam, Comparative review of energy, crude oil, and natural gas for exchange markets in Nigeria. India Bangladesh Energ. 16, 3151 (2023).

    [2] D. Raimi, E. Campbell, R. Newell, B. Prest, S. Villanueva et al., Resources for the future: Washington (DC, USA, 2022)

    [3] B.B. Gicha, L.T. Tufa, Y. Choi, J. Lee, Amorphous Ni1–xFex oxyhydroxide nanosheets with integrated bulk and surface iron for a high and stable oxygen evolution reaction. ACS Appl. Energy Mater. 4, 6833–6841 (2021).

    [4] B.B. Gicha, L.T. Tufa, S. Kang, M. Goddati, E.T. Bekele et al., Transition metal-based 2D layered double hydroxide nanosheets: design strategies and applications in oxygen evolution reaction. Nanomaterials 11, 1388 (2021).

    [5] C.F. Molla, B.A. Gonfa, F.K. Sabir, B.B. Gicha, N. Nwaji et al., Ni-based ultrathin nanostructures for overall electrochemical water splitting. Mater. Chem. Front. 7, 194–215 (2023).

    [6] B.B. Gicha, L.T. Tufa, M. Goddati, S. Adhikari, J. Gwak et al., Non-thermal plasma assisted fabrication of ultrathin NiCoOx nanosheets for high-performance supercapacitor. Batter. Supercaps 5, 2200270 (2022).

    [7] L.T. Tufa, B.B. Gicha, H. Wu, J. Lee, Fe-based mesoporous nanostructures for electrochemical conversion and storage of energy. Batter. Supercaps 4, 429–444 (2021).

    [8] M. Li, J. Lu, Z. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30(33), e1800561 (2018).

    [9] J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    [10] R. Zhan, X. Wang, Z. Chen, Z.W. Seh, L. Wang et al., Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries. Adv. Energy Mater. 11, 2101565 (2021).

    [11] C.-Y. Wang, T. Liu, X.-G. Yang, S. Ge, N.V. Stanley et al., Fast charging of energy-dense lithium-ion batteries. Nature 611, 485–490 (2022).

    [12] G.G. Eshetu, H. Zhang, X. Judez, H. Adenusi, M. Armand et al., Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes. Nat. Commun. 12, 5459 (2021).

    [13] A. Masias, J. Marcicki, W.A. Paxton, Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 6, 621–630 (2021).

    [14] M. Zschornak, F. Meutzner, J. Lück, A. Latz, T. Leisegang et al., Fundamental principles of battery design. Phys. Sci. Rev. 3, 111 (2018).

    [15] F.M.N.U. Khan, M.G. Rasul, A.S.M. Sayem, N.K. Mandal, Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: a comprehensive review. J. Energy Storage 71, 108033 (2023).

    [16] B.E. Worku, S. Zheng, B. Wang, Review of low-temperature lithium-ion battery progress: new battery system design imperative. Int. J. Energy Res. 46, 14609–14626 (2022).

    [17] S. Choudhury, Z. Huang, C.V. Amanchukwu, P.E. Rudnicki, Y. Chen et al., Ion conducting polymer interfaces for lithium metal anodes: impact on the electrodeposition kinetics. Adv. Energy Mater. 13, 2301899 (2023).

    [18] D. Han, C. Cui, K. Zhang, Z. Wang, J. Gao et al., A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat. Sustain. 5, 205–213 (2022).

    [19] J. Wu, Z. Rao, H. Wang, Y. Huang, Order-structured solid-state electrolytes. SusMat 2, 660–678 (2022).

    [20] J. Wu, S. Liu, F. Han, X. Yao, C. Wang, Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 33, 2000751 (2021).

    [21] X. Chen, Z. Guan, F. Chu, Z. Xue, F. Wu et al., Air-stable inorganic solid-state electrolytes for high energy density lithium batteries: challenges, strategies, and prospects. InfoMat 4, e12248 (2022).

    [22] J. Sun, T. Wang, Y. Gao, Z. Pan, R. Hu et al., Will lithium-sulfur batteries be the next beyond-lithium ion batteries and even much better? InfoMat 4, e12359 (2022).

    [23] M. Balaish, J.C. Gonzalez-Rosillo, K.J. Kim, Y. Zhu, Z.D. Hood et al., Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 6, 227–239 (2021).

    [24] P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014).

    [25] B. Liu, Y. Jia, C. Yuan, L. Wang, X. Gao et al., Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review. Energy Storage Mater. 24, 85–112 (2020).

    [26] P.T. Coman, E.C. Darcy, R.E. White, Simplified thermal runaway model for assisting the design of a novel safe Li-ion battery pack. J. Electrochem. Soc. 169, 040516 (2022).

    [27] N. Williard, W. He, C. Hendricks, M. Pecht, Lessons learned from the 787 dreamliner issue on lithium-ion battery reliability. Energies 6, 4682–4695 (2013).

    [28] M. Kaliaperumal, M.S. Dharanendrakumar, S. Prasanna, K.V. Abhishek, R.K. Chidambaram et al., Cause and mitigation of lithium-ion battery failure—A review. Materials 14(19), 5676 (2021).

    [29] X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia et al., Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 10, 246–267 (2018).

    [30] B. Xu, J. Lee, D. Kwon, L. Kong, M. Pecht, Mitigation strategies for Li-ion battery thermal runaway: a review. Renew. Sustain. Energy Rev. 150, 111437 (2021).

    [31] Y. Li, X. Feng, D. Ren, M. Ouyang, L. Lu et al., Thermal runaway triggered by plated lithium on the anode after fast charging. ACS Appl. Mater. Interfaces 11, 46839–46850 (2019).

    [32] J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    [33] J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    [34] K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018).

    [35] M.J. Loveridge, G. Remy, N. Kourra, R. Genieser, A. Barai et al., Looking deeper into the galaxy (Note 7). Batteries 4(1), 3 (2018).

    [36] Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun et al., Thermal runaway caused fire and explosion of lithium ion battery. J. Power. Sources 208, 210–224 (2012).

    [37] Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama et al., High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1(4), 16030 (2016).

    [38] W. Zhao, J. Yi, P. He, H. Zhou, Solid-state electrolytes for lithium-ion batteries: fundamentals, challenges and perspectives. Electrochem. Energy Rev. 2, 574–605 (2019).

    [39] X. Yao, N. Huang, F. Han, Q. Zhang, H. Wan et al., High-performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 7, 1602923 (2017).

    [40] D. Wang, L.-J. Jhang, R. Kou, M. Liao, S. Zheng et al., Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte. Nat. Commun. 14, 1895 (2023).

    [41] X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao et al., Solid-state lithium–sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 17, 2967–2972 (2017).

    [42] J.G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates et al., A review of lithium and non-lithium based solid state batteries. J. Power. Sources 282, 299–322 (2015).

    [43] B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power. Sources 195, 2419–2430 (2010).

    [44] H. Chen, Y. Wen, Y. Wang, S. Zhang, P. Zhao et al., Direct surface coating of high voltage LiCoO2 cathode with P(VDF-HFP) based gel polymer electrolyte. RSC Adv. 10, 24533–24541 (2020).

    [45] M. Dixit, N. Muralidharan, A. Parejiya, R. Amin, R. Essehli et al., in Current status and prospects of solid-state batteries as the future of energy storage, ed. by Kenneth E. Okedu. Management and applications of energy storage devices. (IntechOpen, 2022).

    [46] J. Lee, T. Lee, K. Char, K.J. Kim, J.W. Choi, Issues and advances in scaling up sulfide-based all-solid-state batteries. Acc. Chem. Res. 54, 3390–3402 (2021).

    [47] S. Xia, X. Wu, Z. Zhang, Y. Cui, W. Liu, Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 5, 753–785 (2019).

    [48] A. Manthiram, An outlook on lithium ion battery technology. ACS Cent. Sci. 3, 1063–1069 (2017).

    [49] X. Judez, H. Zhang, C. Li, G.G. Eshetu, J.A. González-Marcos et al., Review—solid electrolytes for safe and high energy density lithium-sulfur batteries: promises and challenges. J. Electrochem. Soc. 165(1), A6008 (2018).

    [50] L. Suo, Y.-S. Hu, H. Li, M. Armand, L. Chen, A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).

    [51] X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009).

    [52] J. Janek, W.G. Zeier, Challenges in speeding up solid-state battery development. Nat. Energy 8, 230–240 (2023).

    [53] M.A. Weret, W.-N. Su, B.J. Hwang, Strategies towards high performance lithium-sulfur batteries. Batter. Supercaps 5, 2200059 (2022).

    [54] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno et al., A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    [55] T. Kobayashi, Y. Imade, D. Shishihara, K. Homma, M. Nagao et al., All solid-state battery with sulfur electrode and thio-LISICON electrolyte. J. Power. Sources 182, 621–625 (2008).

    [56] B. Ding, J. Wang, Z. Fan, S. Chen, Q. Lin et al., Solid-state lithium–sulfur batteries: advances, challenges and perspectives. Mater. Today 40, 114–131 (2020).

    [57] M. Yang, Y. Yao, M. Chang, F. Tian, W. Xie et al., High energy density sulfur-rich MoS6-based nanocomposite for room temperature all-solid-state lithium metal batteries. Adv. Energy Mater. 13, 2300962 (2023).

    [58] X. Gao, X. Zheng, Y. Tsao, P. Zhang, X. Xiao et al., All-solid-state lithium–sulfur batteries enhanced by redox mediators. J. Am. Chem. Soc. 143, 18188–18195 (2021).

    [59] S. Choi, J. Kim, M. Eom, X. Meng, D. Shin, Application of a carbon nanotube (CNT) sheet as a current collector for all-solid-state lithium batteries. J. Power. Sources 299, 70–75 (2015).

    [60] T. Hakari, M. Deguchi, K. Mitsuhara, T. Ohta, K. Saito et al., Structural and electronic-state changes of a sulfide solid electrolyte during the Li deinsertion–insertion processes. Chem. Mater. 29, 4768–4774 (2017).

    [61] H. Wan, Z. Wang, W. Zhang, X. He, C. Wang, Interface design for all-solid-state lithium batteries. Nature 623, 739–744 (2023).

    [62] W. Zhang, F.H. Richter, S.P. Culver, T. Leichtweiss, J.G. Lozano et al., Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium-ion battery. ACS Appl. Mater. Interfaces 10, 22226–22236 (2018).

    [63] R. Zhu, F. Liu, W. Li, Z. Fu, In-situ generated ultra-high dispersion sulfur 3D-graphene foam for all-solid-state lithium sulfur batteries with high cell-level energy density. ChemistrySelect 5, 9701–9708 (2020).

    [64] M. Li, J.E. Frerichs, M. Kolek, W. Sun, D. Zhou et al., Solid-state lithium–sulfur battery enabled by thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode. Adv. Funct. Mater. 30, 1910123 (2020).

    [65] W. Zhang, T. Leichtweiß, S.P. Culver, R. Koerver, D. Das et al., The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Appl. Mater. Interfaces 9, 35888–35896 (2017).

    [66] Y.E. Choi, K.H. Park, D.H. Kim, D.Y. Oh, H.R. Kwak et al., Coatable Li4SnS4 solid electrolytes prepared from aqueous solutions for all-solid-state lithium-ion batteries. ChemSusChem 10, 2605–2611 (2017).

    [67] G. Liu, J. Shi, M. Zhu, W. Weng, L. Shen et al., Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries. Energy Storage Mater. 38, 249–254 (2021).

    [68] N.C. Rosero-Navarro, T. Kinoshita, A. Miura, M. Higuchi, K. Tadanaga, Effect of the binder content on the electrochemical performance of composite cathode using Li6PS5Cl precursor solution in an all-solid-state lithium battery. Ionics 23, 1619–1624 (2017).

    [69] S. Chida, A. Miura, N.C. Rosero-Navarro, M. Higuchi, N.H.H. Phuc et al., Liquid-phase synthesis of Li6PS5Br using ultrasonication and application to cathode composite electrodes in all-solid-state batteries. Ceram. Int. 44, 742–746 (2018).

    [70] R. Koerver, I. Aygün, T. Leichtweiß, C. Dietrich, W. Zhang et al., Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 29, 5574–5582 (2017).

    [71] S. Ito, S. Fujiki, T. Yamada, Y. Aihara, Y. Park et al., A rocking chair type all-solid-state lithium ion battery adopting Li2O–ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte. J. Power. Sources 248, 943–950 (2014).

    [72] F. Mizuno, A. Hayashi, K. Tadanaga, T. Minami, M. Tatsumisago, All-solid-state lithium secondary batteries using a layer-structured LiNi0.5Mn0.5O2 cathode material. J. Power. Sources 124, 170–173 (2003).

    [73] F. Tian, M. Chang, M. Yang, W. Xie, S. Chen et al., Multi-electron reaction based molybdenum pentasulfide towards high-energy density all-solid-state lithium batteries. Chem. Eng. J. 472, 144914 (2023).

    [74] T.W. Kim, K.H. Park, Y.E. Choi, J.Y. Lee, Y.S. Jung, Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries. J. Mater. Chem. A 6, 840–844 (2018).

    [75] J. Yue, F. Han, X. Fan, X. Zhu, Z. Ma et al., High-performance all-inorganic solid-state sodium-sulfur battery. ACS Nano 11, 4885–4891 (2017).

    [76] X. Fan, J. Yue, F. Han, J. Chen, T. Deng et al., High-performance all-solid-state Na–S battery enabled by casting–annealing technology. ACS Nano 12, 3360–3368 (2018).

    [77] K. Suzuki, D. Kato, K. Hara, T.-A. Yano, M. Hirayama et al., Composite sulfur electrode prepared by high-temperature mechanical milling for use in an all-solid-state lithium–sulfur battery with a Li3.25Ge0.25P0.75S4 electrolyte. Electrochim. Acta. Acta 258, 110–115 (2017).

    [78] H. Li, F. Lian, N. Meng, C. Xiong, N. Wu et al., Constructing electronic and ionic dual conductive polymeric interface in the cathode for high-energy-density solid-state batteries. Adv. Funct. Mater. 31, 2008487 (2021).

    [79] A. Ponrouch, M.R. Palacín, Post-Li batteries: promises and challenges. Philos. Trans. A Math. Phys. Eng. Sci. 377, 20180297 (2019).

    [80] J. Deng, C. Bae, A. Denlinger, T. Miller, Electric vehicles batteries: requirements and challenges. Joule 4, 511–515 (2020).

    [81] Z.P. Energy, S. Power, Time for lithium-ion alternatives. Nat. Energy 7, 461 (2022).

    [82] IEA. Price of Selected Battery Materials and Lithium-ion Batteries, (2015–2023)

    [83] G. Bieker, V. Küpers, M. Kolek, M. Winter, Intrinsic differences and realistic perspectives of lithium-sulfur and magnesium-sulfur batteries. Commun. Mater. 2, 37 (2021).

    [84] N. Boaretto, I. Garbayo, S. Valiyaveettil-SobhanRaj, A. Quintela, C. Li et al., Lithium solid-state batteries: state-of-the-art and challenges for materials, interfaces and processing. J. Power. Sources 502, 229919 (2021).

    [85] S. Dühnen, J. Betz, M. Kolek, R. Schmuch, M. Winter et al., Toward green battery cells: perspective on materials and technologies. Small Meth. 4, 2070023 (2020).

    [86] M. Klimpel, M.V. Kovalenko, K.V. Kravchyk, Advances and challenges of aluminum-sulfur batteries. Commun. Chem. 5, 77 (2022).

    [87] C. Yang, P. Li, J. Yu, L.-D. Zhao, L. Kong, Approaching energy-dense and cost-effective lithium–sulfur batteries: from materials chemistry and price considerations. Energy 201, 117718 (2020).

    [88] Q. Sun, X. Li, H. Zhang, D. Song, X. Shi et al., Resynthesizing LiFePO4/C materials from the recycled cathode via a green full-solid route. J. Alloys Compd. 818, 153292 (2020).

    [89] D. Meggiolaro, M. Agostini, S. Brutti, Aprotic sulfur–metal batteries: lithium and beyond. ACS Energy Lett. 8, 1300–1312 (2023).

    [90] Z. Li, M.S. Pan, L. Su, P.-C. Tsai, A.F. Badel et al., Air-breathing aqueous sulfur flow battery for ultralow-cost long-duration electrical storage. Joule 1, 306–327 (2017).

    [91] Y. Huang, B. Shao, F. Han, in Solid-State Batteries: An Introduction. Solid State Batteries Volume 1: Emerging Materials and Applications. vol. 1413, ACS Symposium Series, no. 1413. (American Chemical Society, 2022), ch. 1, pp. 1–20.

    [92] Z. Zhang, Y. Shao, B. Lotsch, Y.-S. Hu, H. Li et al., New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018).

    [93] J. Janek, W.G. Zeier, A solid future for battery development. Nat. Energy 1, 16141 (2016).

    [94] N.M. Vargas-Barbosa, B. Roling, Dynamic ion correlations in solid and liquid electrolytes: how do they affect charge and mass transport? ChemElectroChem 7, 367–385 (2020).

    [95] S. Randau, D.A. Weber, O. Kötz, R. Koerver, P. Braun et al., Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5, 259–270 (2020).

    [96] E. Umeshbabu, B. Zheng, Y. Yang, Recent progress in all-solid-state Lithium−Sulfur batteries using high Li-ion conductive solid electrolytes. Electrochem. Energy Rev. 2, 199–230 (2019).

    [97] A. Varzi, R. Raccichini, S. Passerini, B. Scrosati, Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J. Mater. Chem. A 4, 17251–17259 (2016).

    [98] J. Li, C. Ma, M. Chi, C. Liang, N.J. Dudney, Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015).

    [99] L. Zhou, N. Minafra, W.G. Zeier, L.F. Nazar, Innovative approaches to Li-argyrodite solid electrolytes for all-solid-state lithium batteries. Acc. Chem. Res. 54, 2717–2728 (2021).

    [100] X. Shen, C.-C. Yang, Y. Liu, G. Wang, H. Tan et al., High-temperature structural and thermoelectric study of argyrodite Ag8GeSe6. ACS Appl. Mater. Interfaces 11, 2168–2176 (2019).

    [101] F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago, High lithium ion conducting glass-ceramics in the system Li2S–P2S5. Solid State Ion. 177, 2721–2725 (2006).

    [102] H.-J. Deiseroth, S.-T. Kong, H. Eckert, J. Vannahme, C. Reiner et al., Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem. Int. Ed. 47, 755–758 (2008).

    [103] J.W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power. Sources 195, 4554–4569 (2010).

    [104] Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang et al., Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, e1705702 (2018).

    [105] Y. Wang, W.D. Richards, S.P. Ong, L.J. Miara, J.C. Kim et al., Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015).

    [106] T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    [107] A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    [108] Y. Seino, T. Ota, K. Takada, A. Hayashi, M. Tatsumisago, A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 7, 627–631 (2014).

    [109] C. Sun, J. Liu, Y. Gong, D.P. Wilkinson, J. Zhang, Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363–386 (2017).

    [110] Y.-K. Sun, Promising all-solid-state batteries for future electric vehicles. ACS Energy Lett. 5, 3221–3223 (2020).

    [111] A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, T. Minami, Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling. J. Am. Ceram. Soc. 84, 477–479 (2001).

    [112] C. Dietrich, D.A. Weber, S.J. Sedlmaier, S. Indris, S.P. Culver et al., Lithium ion conductivity in Li2S–P2S5 glasses–building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7. J. Mater. Chem. A 5, 18111–18119 (2017).

    [113] T. Ohtomo, A. Hayashi, M. Tatsumisago, Y. Tsuchida, S. Hama et al., All-solid-state lithium secondary batteries using the 75Li2S·25P2S5 glass and the 70Li2S·30P2S5 glass–ceramic as solid electrolytes. J. Power. Sources 233, 231–235 (2013).

    [114] J.H. Kennedy, Ionically conductive glasses based on SiS2. Mater. Chem. Phys. 23, 29–50 (1989).

    [115] J. Souquet, E. Robinel, B. Barrau, M. Ribes, Glass formation and ionic conduction in the M2S–GeS2 (M = Li, Na, Ag) systems. Solid State Ion. 3–4, 317–321 (1981).

    [116] M. Tatsumisago, A. Hayashi, Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries. Solid State Ion. 225, 342–345 (2012).

    [117] M. Tatsumisago, K. Hirai, T. Hirata, M. Takahashi, T. Minami, Structure and properties of lithium ion conducting oxysulfide glasses prepared by rapid quenching. Solid State Ion. 86–88, 487–490 (1996).

    [118] S. Ujiie, T. Inagaki, A. Hayashi, M. Tatsumisago, Conductivity of 70Li2S·30P2S5 glasses and glass–ceramics added with lithium halides. Solid State Ion. 263, 57–61 (2014).

    [119] A. Pradel, M. Ribes, Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching. Solid State Ion. 18–19, 351–355 (1986).

    [120] J.H. Kennedy, Z. Zhang, H. Eckert, Ionically conductive sulfide-based lithium glasses. J. Non Cryst. Solids 123, 328–338 (1990).

    [121] C. Dietrich, D.A. Weber, S. Culver, A. Senyshyn, S.J. Sedlmaier et al., Synthesis, structural characterization, and lithium ion conductivity of the lithium thiophosphate Li2P2S6. Inorg. Chem. 56, 6681–6687 (2017).

    [122] H. Yamane, M. Shibata, Y. Shimane, T. Junke, Y. Seino et al., Crystal structure of a superionic conductor, Li7P3S11. Solid State Ion. 178, 1163–1167 (2007).

    [123] R. Mercier, J.-P. Malugani, B. Fahys, G. Robert, J. Douglade, Structure du tetrathiophosphate de lithium. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem 38, 1887–1890 (1982).

    [124] S.T. Kong, O. Gün, B. Koch, H.J. Deiseroth, H. Eckert et al., Structural characterisation of the Li argyrodites Li7PS6 and Li7PSe6 and their solid solutions: quantification of site preferences by MAS-NMR spectroscopy. Chemistry 16, 5138–5147 (2010).

    [125] R. Mercier, J.P. Malugani, B. Fahys, J. Douglande, G. Robert, Synthese, structure cristalline et analyse vibrationnelle de l’hexathiohypodiphosphate de lithium Li4P2S6. J. Solid State Chem. 43, 151–162 (1982).

    [126] F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago, New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses. Adv. Mater. 17, 918–921 (2005).

    [127] M. Tachez, J. Malugani, R. Mercier, G. Robert, Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4. Solid State Ion. 14, 181–185 (1984).

    [128] K. Homma, M. Yonemura, T. Kobayashi, M. Nagao, M. Hirayama et al., Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid State Ion. 182, 53–58 (2011).

    [129] M. Eom, J. Kim, S. Noh, D. Shin, Crystallization kinetics of Li2S–P2S5 solid electrolyte and its effect on electrochemical performance. J. Power. Sources 284, 44–48 (2015).

    [130] N. Minafra, S.P. Culver, T. Krauskopf, A. Senyshyn, W.G. Zeier, Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites. J. Mater. Chem. A 6, 645–651 (2018).

    [131] E. Gaudin, F. Boucher, F. Taulelle, M. Evain, Structures and phase transitions of the A7PSe6 (a = Ag, Cu) argyrodite-type ionic conductors. III. alpha-Cu7PSe6. Acta Crystallogr. B Crystallogr. B 56(Pt 6), 972–979 (2000).

    [132] R.P. Rao, S. Adams, Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Phys. Status Solidi A 208, 1804–1807 (2011).

    [133] N.J.J. de Klerk, I. Rosłoń, M. Wagemaker, Diffusion mechanism of Li argyrodite solid electrolytes for Li-ion batteries and prediction of optimized halogen doping: the effect of Li vacancies, halogens, and halogen disorder. Chem. Mater. 28, 7955–7963 (2016).

    [134] H.M. Chen, C. Maohua, S. Adams, Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes. Phys. Chem. Chem. Phys. 17, 16494–16506 (2015).

    [135] M.A. Kraft, S.P. Culver, M. Calderon, F. Böcher, T. Krauskopf et al., Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J. Am. Chem. Soc. 139, 10909–10918 (2017).

    [136] Y. Inoue, K. Suzuki, N. Matsui, M. Hirayama, R. Kanno, Synthesis and structure of novel lithium-ion conductor Li7Ge3PS12. J. Solid State Chem. 246, 334–340 (2017).

    [137] R. Kanno, T. Hata, Y. Kawamoto, M. Irie, Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system. Solid State Ion. 130, 97–104 (2000).

    [138] T. Kaib, S. Haddadpour, M. Kapitein, P. Bron, C. Schröder et al., New lithium chalcogenidotetrelates, LiChT: synthesis and characterization of the Li+-conducting tetralithium ortho-Sulfidostannate Li4SnS4. Chem. Mater. 24, 2211–2219 (2012).

    [139] G. Sahu, Z. Lin, J. Li, Z. Liu, N. Dudney et al., Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ. Sci. 7, 1053–1058 (2014).

    [140] S. Hori, M. Kato, K. Suzuki, M. Hirayama, Y. Kato et al., Phase diagramof the Li4GeS4–Li3PS4 quasi-binary system containing the superionic conductor Li10GeP2S12. J. Am. Ceram. Soc. 98, 3352–3360 (2015).

    [141] P. Zhou, J. Wang, F. Cheng, F. Li, J. Chen, A solid lithium superionic conductor Li11AlP2S12 with a thio-LISICON analogous structure. Chem. Commun. 52, 6091–6094 (2016).

    [142] A. Kuhn, J. Köhler, B.V. Lotsch, Single-crystal X-ray structure analysis of the superionic conductor Li10GeP2S12. Phys. Chem. Chem. Phys. 15, 11620–11622 (2013).

    [143] Y. Mo, S.P. Ong, G. Ceder, First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem. Mater. 24, 15–17 (2012).

    [144] A. Kuhn, V. Duppel, B.V. Lotsch, Tetragonal Li10GeP2S12 and Li7GePS8–exploring the Li ion dynamics in LGPS Li electrolytes. Energy Environ. Sci. 6, 3548–3552 (2013).

    [145] S.P. Ong, Y. Mo, W.D. Richards, L. Miara, H.S. Lee et al., Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energy Environ. Sci. 6, 148–156 (2013).

    [146] P. Bron, S. Johansson, K. Zick, J.S.A. der Günne, S. Dehnen et al., Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013).

    [147] P. Bron, S. Dehnen, B. Roling, Li10Si0.3Sn0.7P2S12–A low-cost and low-grain-boundary-resistance lithium superionic conductor. J. Power. Sources 329, 530–535 (2016).

    [148] J.M. Whiteley, J.H. Woo, E. Hu, K.-W. Nam, S.-H. Lee, Empowering the lithium metal battery through a silicon-based superionic conductor. J. Electrochem. Soc. 161, A1812–A1817 (2014).

    [149] A. Kuhn, O. Gerbig, C. Zhu, F. Falkenberg, J. Maier et al., A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. Phys. Chem. Chem. Phys. 16, 14669–14674 (2014).

    [150] Y. Hu, W. Chen, T. Lei, Y. Jiao, J. Huang et al., Strategies toward high-loading lithium–sulfur battery. Adv. Energy Mater. 10, 2000082 (2020).

    [151] H. Kim, H.-N. Choi, J.-Y. Hwang, C.S. Yoon, Y.-K. Sun, Tailoring the interface between sulfur and sulfide solid electrolyte for high-areal-capacity all-solid-state lithium–sulfur batteries. ACS Energy Lett. 8, 3971–3979 (2023).

    [152] A. Hayashi, T. Ohtomo, F. Mizuno, K. Tadanaga, M. Tatsumisago, Rechargeable lithium batteries, using sulfur-based cathode materials and Li2S–P2S5 glass-ceramic electrolytes. Electrochim. Acta 50, 893–897 (2004).

    [153] A.S. Alzahrani, M. Otaki, D. Wang, Y. Gao, T.S. Arthur et al., Confining sulfur in porous carbon by vapor deposition to achieve high-performance cathode for all-solid-state lithium–sulfur batteries. ACS Energy Lett. 6, 413–418 (2021).

    [154] X. Zheng, Y. Wu, C. Li, J. Peng, W. Yang et al., Promoting the conversion of S and Li2S using a Co3O4@NC additive in all-solid-state Li–S batteries. J. Mater. Chem. A 10, 18907–18915 (2022).

    [155] S. Xu, C.Y. Kwok, L. Zhou, Z. Zhang, I. Kochetkov et al., A high capacity all solid-state Li-sulfur battery enabled by conversion-intercalation hybrid cathode architecture. Adv. Funct. Mater. 31, 2004239 (2021).

    [156] S. Kim, J. Choi, S.-M. Bak, L. Sang, Q. Li et al., Reversible conversion reactions and small first cycle irreversible capacity loss in metal sulfide-based electrodes enabled by solid electrolytes. Adv. Funct. Mater. 29, 1901719 (2019).

    [157] Z. Yang, F. Wang, Z. Hu, J. Chu, H. Zhan et al., Room-temperature all-solid-state lithium–organic batteries based on sulfide electrolytes and organodisulfide cathodes. Adv. Energy Mater. 11, 2102962 (2021).

    [158] F. Han, J. Yue, X. Fan, T. Gao, C. Luo et al., High-performance all-solid-state lithium–sulfur battery enabled by a mixed-conductive Li2S nanocomposite. Nano Lett. 16, 4521–4527 (2016).

    [159] H. Wan, B. Zhang, S. Liu, J. Zhang, X. Yao et al., Understanding LiI-LiBr catalyst activity for solid state Li2S/S reactions in an all-solid-state lithium battery. Nano Lett. 21, 8488–8494 (2021).

    [160] M. Yu, Z. Wang, Y. Wang, Y. Dong, J. Qiu, Freestanding flexible Li2S paper electrode with high mass and capacity loading for high-energy Li–S batteries. Adv. Energy Mater. 7, 1700018 (2017).

    [161] J. Shi, G. Liu, W. Weng, L. Cai, Q. Zhang et al., Co3S4@Li7P3S11 hexagonal platelets as cathodes with superior interfacial contact for all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 12, 14079–14086 (2020).

    [162] S.M. Hosseini, A. Varzi, S. Ito, Y. Aihara, S. Passerini, High loading CuS-based cathodes for all-solid-state lithium sulfur batteries with enhanced volumetric capacity. Energy Storage Mater. 27, 61–68 (2020).

    [163] X. Zhang, K. Chen, Z. Sun, G. Hu, R. Xiao et al., Structure-related electrochemical performance of organosulfur compounds for lithium–sulfur batteries. Energy Environ. Sci. 13, 1076–1095 (2020).

    [164] H. Yang, J. Chen, J. Yang, J. Wang, Prospect of sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) cathode materials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 132, 7374–7386 (2020).

    [165] Z. Sun, Y. Hu, F. Qin, N. Lv, B. Li et al., Sulfurized polyacrylonitrile cathodes with electrochemical and structural tuning for high capacity all-solid-state lithium–sulfur batteries. Sustainable Energy Fuels 5, 5603–5614 (2021).

    [166] T. Takeuchi, T. Kojima, H. Kageyama, H. Kobayashi, K. Mitsuhara et al., All-solid-state lithium-sulfur batteries using sulfurized alcohol composite material with improved coulomb efficiency. Energy Technol. 7, 1900509 (2019).

    [167] S. Li, D. Leng, W. Li, L. Qie, Z. Dong et al., Recent progress in developing Li2S cathodes for Li–S batteries. Energy Storage Mater. 27, 279–296 (2020).

    [168] F. Wu, T.P. Pollard, E. Zhao, Y. Xiao, M. Olguin et al., Layered LiTiO2 for the protection of Li2S cathodes against dissolution: mechanisms of the remarkable performance boost. Energy Environ. Sci. 11, 807–817 (2018).

    [169] J. Jiang, Q. Fan, Z. Zheng, M.R. Kaiser, S. Chou et al., The dual functions of defect-rich carbon nanotubes as both conductive matrix and efficient mediator for Li—S batteries. Small 17, e2103535 (2021).

    [170] S. Luo, F. Wu, G. Yushin, Strategies for fabrication, confinement and performance boost of Li2S in lithium-sulfur, silicon-sulfur & related batteries. Mater. Today 49, 253–270 (2021).

    [171] H. Yan, H. Wang, D. Wang, X. Li, Z. Gong et al., In situ generated Li2S-C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading. Nano Lett. 19, 3280–3287 (2019).

    [172] D. Wang, Y. Wu, X. Zheng, S. Tang, Z. Gong et al., Li2S@NC composite enable high active material loading and high Li2S utilization for all-solid-state lithium sulfur batteries. J. Power. Sources 479, 228792 (2020).

    [173] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin et al., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).

    [174] K.J. Kim, M. Balaish, M. Wadaguchi, L. Kong, J.L.M. Rupp, Solid-state Li–metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv. Energy Mater. 11, 2002689 (2021).

    [175] W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, G. Ceder, Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016).

    [176] S. Wenzel, S. Randau, T. Leichtweiß, D.A. Weber, J. Sann et al., Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 28, 2400–2407 (2016).

    [177] S. Wenzel, S.J. Sedlmaier, C. Dietrich, W.G. Zeier, J. Janek, Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ion. 318, 102–112 (2018).

    [178] D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    [179] Y. Yang, Z. Wang, G. Li, T. Jiang, Y. Tong et al., Inspired by the “tip effect”: a novel structural design strategy for the cathode in advanced lithium–sulfur batteries. J. Mater. Chem. A 5, 3140–3144 (2017).

    [180] F. Mo, J. Ruan, S. Sun, Z. Lian, S. Yang et al., Inside or outside: origin of lithium dendrite formation of all solid-state electrolytes. Adv. Energy Mater. 9, 1902123 (2019).

    [181] Y. Tang, L. Zhang, J. Chen, H. Sun, T. Yang et al., Electro-chemo-mechanics of lithium in solid state lithium metal batteries. Energy Environ. Sci. 14, 602–642 (2021).

    [182] H. Park, J. Kim, D. Lee, J. Park, S. Jo et al., Epitaxial growth of nanostructured Li2 Se on lithium metal for all solid-state batteries. Adv. Sci. 8, e2004204 (2021).

    [183] A.L. Santhosha, L. Medenbach, J.R. Buchheim, P. Adelhelm, The indium–lithium electrode in solid-state lithium-ion batteries: phase formation, redox potentials, and interface stability. Batter. Supercaps 2, 524–529 (2019).

    [184] S.W. Park, H.J. Choi, Y. Yoo, H.-D. Lim, J.-W. Park et al., Stable cycling of all-solid-state batteries with sacrificial cathode and lithium-free indium layer. Adv. Funct. Mater. 32, 2270030 (2022).

    [185] S. Luo, Z. Wang, X. Li, X. Liu, H. Wang et al., Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat. Commun. 12, 6968 (2021).

    [186] J.P. Pender, G. Jha, D.H. Youn, J.M. Ziegler, I. Andoni et al., Electrode degradation in lithium-ion batteries. ACS Nano 14, 1243–1295 (2020).

    [187] W.-J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power. Sources 196(1), 13–24 (2011).

    [188] D.H.S. Tan, Y.-T. Chen, H. Yang, W. Bao, B. Sreenarayanan et al., Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373, 1494–1499 (2021).

    [189] X. Han, W. Zhou, M. Chen, J. Chen, G. Wang et al., Interfacial nitrogen engineering of robust silicon/MXene anode toward high energy solid-state lithium-ion batteries. J. Energy Chem. 67, 727–735 (2022).

    [190] S. Lou, F. Zhang, C. Fu, M. Chen, Y. Ma et al., Interface issues and challenges in all-solid-state batteries: lithium, sodium, and beyond. Adv. Mater. 33, e2000721 (2021).

    [191] F. Han, T. Gao, Y. Zhu, K.J. Gaskell, C. Wang, A battery made from a single material. Adv. Mater. 27, 3473–3483 (2015).

    [192] Y. Kato, S. Shiotani, K. Morita, K. Suzuki, M. Hirayama et al., All-solid-state batteries with thick electrode configurations. J. Phys. Chem. Lett. 9, 607–613 (2018).

    [193] H.-K. Tian, Z. Liu, Y. Ji, L.-Q. Chen, Y. Qi, Interfacial electronic properties dictate Li dendrite growth in solid electrolytes. Chem. Mater. 31, 7351–7359 (2019).

    [194] S.Y. Han, C. Lee, J.A. Lewis, D. Yeh, Y. Liu et al., Stress evolution during cycling of alloy-anode solid-state batteries. Joule 5, 2450–2465 (2021).

    [195] L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13, 49 (2021).

    [196] G.L. Gregory, H. Gao, B. Liu, X. Gao, G.J. Rees et al., Buffering volume change in solid-state battery composite cathodes with CO2-derived block polycarbonate ethers. J. Am. Chem. Soc. 144, 17477–17486 (2022).

    [197] K. Zhang, Q. Zhao, Z. Tao, J. Chen, Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 6, 38–46 (2013).

    [198] Y. Cao, M. Li, J. Lu, J. Liu, K. Amine, Bridging the academic and industrial metrics for next-generation practical batteries. Nat. Nanotechnol. 14, 200–207 (2019).

    [199] Z. Lin, T. Liu, X. Ai, C. Liang, Aligning academia and industry for unified battery performance metrics. Nat. Commun. 9, 5262 (2018).

    [200] Y. Liang, H. Liu, G. Wang, C. Wang, Y.-H. Ni et al., Challenges, interface engineering, and processing strategies toward practical\n sulfide-based all-solid-state\n lithium batteries. InfoMat. 4(5), e12292 (2022).

    [201] Y. Guo, S. Wu, Y.-B. He, F. Kang, L. Chen et al., Solid-state lithium batteries: safety and prospects. eScience 2, 138–163 (2022).

    [202] Y. Lu, X. Rong, Y.-S. Hu, L. Chen, H. Li, Research and development of advanced battery materials in China. Energy Storage Mater. 23, 144–153 (2019).

    [203] M. Snyder, A. Theis, Understanding and managing hazards of lithium-ion battery systems. Process. Saf. Prog. 41, 440–448 (2022).

    [204] C. Heubner, K. Voigt, P. Marcinkowski, S. Reuber, K. Nikolowski et al., From active materials to battery cells: a straightforward tool to determine performance metrics and support developments at an application-relevant level. Adv. Energy Mater. 11(46), 2102647 (2021).

    [205] J. Wu, L. Yuan, W. Zhang, Z. Li, X. Xie et al., Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ. Sci. 14, 12–36 (2021).

    [206] A. Banerjee, X. Wang, C. Fang, E. Wu, Y.S. Meng, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120, 6878–6933 (2020).

    [207] L. Gao, B. Tang, H. Jiang, Z. Xie, J. Wei et al., Fiber-reinforced composite polymer electrolytes for solid-state lithium batteries. Adv. Sustain. Syst. 6, 2100389 (2022).

    [208] P. Albertus, V. Anandan, C. Ban, N. Balsara, I. Belharouak et al., Challenges for and pathways toward Li-metal-based all-solid-state batteries. ACS Energy Lett. (2021).

    [209] X. Hao, Q. Zhao, S. Su, S. Zhang, J. Ma et al., Constructing multifunctional interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li metal by magnetron sputtering for highly stable solid-state lithium metal batteries. Adv. Energy Mater. 9, 1901604 (2019).

    [210] H. Ling, L. Shen, Y. Huang, J. Ma, L. Chen et al., Integrated structure of cathode and double-layer electrolyte for highly stable and dendrite-free all-solid-state Li-metal batteries. ACS Appl. Mater. Interfaces 12, 56995–57002 (2020).

    [211] R. Pacios, A. Villaverde, M. Martínez-Ibañez, M. Casas-Cabanas, F. Aguesse et al., Roadmap for competitive production of solid-state batteries: how to convert a promise into reality. Adv. Energy Mater. 13, 2301018 (2023).

    [212] F. Hippauf, B. Schumm, S. Doerfler, H. Althues, S. Fujiki et al., Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach. Energy Storage Mater. 21, 390–398 (2019).

    [213] D.H. Kim, D.Y. Oh, K.H. Park, Y.E. Choi, Y.J. Nam et al., Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries. Nano Lett. 17, 3013–3020 (2017).

    [214] K. Pan, L. Zhang, W. Qian, X. Wu, K. Dong et al., A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 32, e2000399 (2020).

    [215] J. Wu, L. Shen, Z. Zhang, G. Liu, Z. Wang et al., All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes. Electrochem. Energ. Rev. 4, 101–135 (2021).

    [216] Y. Pang, J. Pan, J. Yang, S. Zheng, C. Wang, Electrolyte/electrode interfaces in all-solid-state lithium batteries: a review. Electrochem. Energ. Rev. 4, 169–193 (2021).

    [217] Z. Wang, Y. Wang, Z. Zhang, X. Chen, W. Lie et al., Building artificial solid-electrolyte interphase with uniform intermolecular ionic bonds toward dendrite-free lithium metal anodes. Adv. Funct. Mater. 30, 2002414 (2020).

    [218] B. Tang, L. Gao, J. Liu, S.-H. Bo, Z. Xie et al., Surface modification of garnet with amorphous SnO2 via atomic layer deposition. J. Mater. Chem. A 8, 18087–18093 (2020).

    [219] L. Chen, T. Gu, J. Ma, K. Yang, P. Shi et al., In situ construction of Li3N-enriched interface enabling ultra-stable solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Nano Energy 100, 107470 (2022).

    [220] Z.-J. Zheng, H. Ye, Z.-P. Guo, Recent progress in designing stable composite lithium anodes with improved wettability. Adv. Sci. 7, 2002212 (2020).

    [221] Y. Xiao, Y. Wang, S.-H. Bo, J.C. Kim, L.J. Miara et al., Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 5, 105–126 (2019).

    [222] J. Ma, G. Zhong, P. Shi, Y. Wei, K. Li et al., Constructing a highly efficient “solid–polymer–solid” elastic ion transport network in cathodes activates the room temperature performance of all-solid-state lithium batteries. Energy Environ. Sci. 15, 1503–1511 (2022).

    [223] J. Mi, J. Ma, L. Chen, C. Lai, K. Yang et al., Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries. Energy Storage Mater. 48, 375–383 (2022).

    [224] Y. Liu, Z. Ju, B. Zhang, Y. Wang, J. Nai et al., Visualizing the sensitive lithium with atomic precision: cryogenic electron microscopy for batteries. Acc. Chem. Res. 54, 2088–2099 (2021).

    [225] Z. Ju, C. Jin, X. Cai, O. Sheng, J. Wang et al., Cationic interfacial layer toward a LiF-enriched interphase for stable Li metal batteries. ACS Energy Lett. 8, 486–493 (2023).

    [226] K.B. Hatzell, Y. Zheng, Prospects on large-scale manufacturing of solid state batteries. MRS Energy Sustain. 8, 33–39 (2021).

    [227] K. Lee, S. Kim, J. Park, S.H. Park, A. Coskun et al., Selection of binder and solvent for solution-processed all-solid-state battery. J. Electrochem. Soc. 164, A2075–A2081 (2017).

    [228] M. Yamamoto, Y. Terauchi, A. Sakuda, M. Takahashi, Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities. Sci. Rep. 8, 1212 (2018).

    [229] K. Lee, J. Lee, S. Choi, K. Char, J.W. Choi, Thiol–ene click reaction for fine polarity tuning of polymeric binders in solution-processed all-solid-state batteries. ACS Energy Lett. 4, 94–101 (2019).

    [230] J. Lee, K. Lee, T. Lee, H. Kim, K. Kim et al., In situ deprotection of polymeric binders for solution-processible sulfide-based all-solid-state batteries. Adv. Mater. 32, e2001702 (2020).

    [231] D.Y. Oh, Y.J. Nam, K.H. Park, S.H. Jung, K.T. Kim et al., Slurry-fabricable Li+-conductive polymeric binders for practical all-solid-state lithium-ion batteries enabled by solvate ionic liquids. Adv. Energy Mater. 9, 1802927 (2019).

    [232] T. Ates, M. Keller, J. Kulisch, T. Adermann, S. Passerini, Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte. Energy Storage Mater. 17, 204–210 (2019).

    [233] H. Nakamura, T. Kawaguchi, T. Masuyama, A. Sakuda, T. Saito et al., Dry coating of active material particles with sulfide solid electrolytes for an all-solid-state lithium battery. J. Power. Sources 448, 227579 (2020).

    [234] Y. Lu, C.-Z. Zhao, H. Yuan, J.-K. Hu, J.-Q. Huang et al., Dry electrode technology, the rising star in solid-state battery industrialization. Matter 5, 876–898 (2022).

    [235] K. Periyapperuma, T.T. Tran, S. Trussler, D. Ioboni, M.N. Obrovac, Conflat two and three electrode electrochemical cells. J. Electrochem. Soc. 161, A2182–A2187 (2014).

    [236] Y. Shang, T. Chu, B. Shi, K.K. Fu, Scalable synthesis of LiF-rich 3D architected Li metal anode via direct lithium-fluoropolymer pyrolysis to enable fast Li cycling. Energy Environ. Mater. 4, 213–221 (2021).

    [237] S. Yubuchi, W. Nakamura, T. Bibienne, S. Rousselot, L.W. Taylor et al., All-solid-state cells with Li4Ti5O12/carbon nanotube composite electrodes prepared by infiltration with argyrodite sulfide-based solid electrolytes via liquid-phase processing. J. Power. Sources 417, 125–131 (2019).

    [238] D.H. Kim, Y.-H. Lee, Y.B. Song, H. Kwak, S.-Y. Lee et al., Thin and flexible solid electrolyte membranes with ultrahigh thermal stability derived from solution-processable Li argyrodites for all-solid-state Li-ion batteries. ACS Energy Lett. 5(3), 718–727 (2020).

    [239] A. Miura, N.C. Rosero-Navarro, A. Sakuda, K. Tadanaga, N.H.H. Phuc et al., Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. Nat. Rev. Chem. 3, 189–198 (2019).

    Birhanu Bayissa Gicha, Lemma Teshome Tufa, Njemuwa Nwaji, Xiaojun Hu, Jaebeom Lee. Advances in All-Solid-State Lithium–Sulfur Batteries for Commercialization[J]. Nano-Micro Letters, 2024, 16(1): 172
    Download Citation