• Chinese Journal of Quantum Electronics
  • Vol. 41, Issue 1, 135 (2024)
LI Xiang1、2、3、* and ZHANG Kejia1、2、3
Author Affiliations
  • 1School of Mathematical Sciences, Heilongjiang University, Harbin 150080, China
  • 2Heilongjiang Provincial Key Laboratory of the Theory and Computation of Complex Systems, Harbin 150080, China
  • 3Institute for Cryptology & Network Security, Heilongjiang University, Harbin 150080, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2024.01.013 Cite this Article
    Xiang LI, Kejia ZHANG. A semi⁃quantum mutual identity authentication protocol based on GHZ state[J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 135 Copy Citation Text show less
    References

    [1] Dušek M, Haderka O, Hendrych M et al. Quantum identification system[J]. Physical Review A, 60, 149-156(1999).

    [2] Zeng G H, Zhang W P. Identity verification in quantum key distribution[J]. Physical Review A, 61, 022303(2000).

    [3] Mihara T. Quantum identification schemes with entanglements[J]. Physical Review A, 65, 052326(2002).

    [4] Li X, Zhang K J, Zhang L et al. A new quantum multiparty simultaneous identity authentication protocol with the classical third-party[J]. Entropy, 24, 483(2022).

    [5] Kang M S, Heo J, Hong C H et al. Controlled mutual quantum entity authentication with an untrusted third party[J]. Quantum Information Processing, 17, 159(2018).

    [6] Zawadzki P. Quantum identity authentication without entanglement[J]. Quantum Information Processing, 18, 7(2019).

    [7] Zhu H F, Wang L W, Zhang Y L. An efficient quantum identity authentication key agreement protocol without entanglement[J]. Quantum Information Processing, 19, 381(2020).

    [8] Boyer M, Kenigsberg D, Mor T. Quantum key distribution with classical Bob[J]. Physical Review Letters, 99, 140501(2007).

    [9] Boyer M, Gelles R, Kenigsberg D et al. Semiquantum key distribution[J]. Physical Review A, 79, 032341(2009).

    [10] Zou X F, Qiu D W, Li L Z et al. Semiquantum-key distribution using less than four quantum states[J]. Physical Review A, 79, 052312(2009).

    [11] Krawec W O. Restricted attacks on semi-quantum key distribution protocols[J]. Quantum Information Processing, 13, 2417-2436(2014).

    [12] Zhou N R, Zhu K N, Zou X F. Multi-party semi-quantum key distribution protocol with four-particle cluster states[J]. Annalen Der Physik, 531, 1800520(2019).

    [13] Yang C W. Efficient and secure semi-quantum secure direct communication protocol against double CNOT attack[J]. Quantum Information Processing, 19, 50(2019).

    [14] Gu J, Lin P H, Hwang T. Double C-NOT attack and counterattack on 'Three-step semi-quantum secure direct communication protocol'[J]. Quantum Information Processing, 17, 182(2018).

    [15] Li Q, Chan W H, Long D Y. Semi-quantum secret sharing using entangled states[J]. Physical Review A, 82, 022303(2010).

    [16] Tsai C W, Chang Y C, Lai Y H et al. Cryptanalysis of limited resource semi-quantum secret sharing[J]. Quantum Information Processing, 19, 224(2020).

    [17] Xie C, Li L Z, Qiu D W. A novel semi-quantum secret sharing scheme of specific bits[J]. International Journal of Theoretical Physics, 54, 3819-3824(2015).

    [18] Zhou N R, Zhu K N, Bi W et al. Semi-quantum identification[J]. Quantum Information Processing, 18, 1-17(2019).

    [19] Wen X J, Zhao X Q, Gong L H et al. A semi-quantum authentication protocol for message and identity[J]. Laser Physics Letters, 16, 075206(2019).

    [20] Jiang S Q, Zhou R G, Hu W W. Semi-quantum mutual identity authentication using Bell states[J]. International Journal of Theoretical Physics, 60, 3353-3362(2021).

    Xiang LI, Kejia ZHANG. A semi⁃quantum mutual identity authentication protocol based on GHZ state[J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 135
    Download Citation