• Frontiers of Optoelectronics
  • Vol. 15, Issue 4, 12200 (2022)
Boqing Zhang1, Nuo Chen1, Xinda Lu1, Yuntian Chen1、2, Xinliang Zhang1、2, and Jing Xu1、2、*
Author Affiliations
  • 1School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-022-00047-y Cite this Article
    Boqing Zhang, Nuo Chen, Xinda Lu, Yuntian Chen, Xinliang Zhang, Jing Xu. Dissipative Kerr single soliton generation with extremely high probability via spectral mode depletion[J]. Frontiers of Optoelectronics, 2022, 15(4): 12200 Copy Citation Text show less
    References

    [1] Kippenberg, T.J., Gaeta, A.L., Lipson, M., Gorodetsky, M.L.: Dissipative Kerr solitons in optical microresonators. Science 361(6402), eaan8083 (2018)

    [2] Pasquazi, A., Peccianti, M., Razzari, L., Moss, D.J., Coen, S., Erkintalo, M., Chembo, Y.K., Hansson, T., Wabnitz, S., Del’Haye, P., Xue, X., Weiner, A.M., Morandotti, R.: Micro-combs: a novel generation of optical sources. Phys. Rep. 729, 1–81 (2018)

    [3] Coddington, I., Newbury, N., Swann, W.: Dual-comb spectroscopy. Optica 3(4), 414–426 (2016)

    [4] Suh, M.G., Yang, Q.F., Yang, K.Y., Yi, X., Vahala, K.J.: Microresonator soliton dual-comb spectroscopy. Science 354(6312), 600–603 (2016)

    [5] Yu, M., Okawachi, Y., Griffith, A.G., Lipson, M., Gaeta, A.L.: Microresonator-based high-resolution gas spectroscopy. Opt. Lett. 42(21), 4442–4445 (2017)

    [6] Papp, S.B., Beha, K., Del’Haye, P., Quinlan, F., Lee, H., Vahala, K.J., Diddams, S.A.: Microresonator frequency comb optical clock. Optica 1(1), 10–14 (2014)

    [7] Marin-Palomo, P., Kemal, J.N., Karpov, M., Kordts, A., Pfeifle, J., Pfeiffer, M.H.P., Trocha, P., Wolf, S., Brasch, V., Anderson, M.H., Rosenberger, R., Vijayan, K., Freude, W., Kippenberg, T.J., Koos, C.: Microresonator-based solitons for massively parallel coherent optical communications. Nature 546(7657), 274–279 (2017)

    [8] Trocha, P., Karpov, M., Ganin, D., Pfeiffer, M.H.P., Kordts, A., Wolf, S., Krockenberger, J., Marin-Palomo, P., Weimann, C., Randel, S., Freude, W., Kippenberg, T.J., Koos, C.: Ultrafast optical ranging using microresonator soliton frequency combs. Science 359(6378), 887–891 (2018)

    [9] Suh, M.G., Vahala, K.J.: Soliton microcomb range measurement. Science 359(6378), 884–887 (2018)

    [10] Wang, W., Wang, L., Zhang, W.: Advances in soliton microcomb generation. Adv. Photonics 2(3), 034001 (2020)

    [11] Guo, H., Karpov, M., Lucas, E., Kordts, A., Pfeiffer, M.H.P., Brasch, V., Lihachev, G., Lobanov, V.E., Gorodetsky, M.L., Kippenberg, T.J.: Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13(1), 94–102 (2017)

    [12] Bao, C., Xuan, Y., Leaird, D.E., Wabnitz, S., Qi, M., Weiner, A.M.: Spatial mode-interaction induced single soliton generation in microresonators. Optica 4(9), 1011 (2017)

    [13] Herr, T., Brasch, V., Jost, J.D., Mirgorodskiy, I., Lihachev, G., Gorodetsky, M.L., Kippenberg, T.J.: Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113(12), 123901 (2014)

    [14] Zhou, H., Geng, Y., Cui, W., Huang, S.W., Zhou, Q., Qiu, K., Wei Wong, C.: Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl. 8(1), 50 (2019)

    [15] Liao, M., Zhou, H., Geng, Y., Ling, Y., Wu, B., Qiu, K.: Enhanced single cavity soliton generation in Kerr microresonators via inverse-Kelly sideband. IEEE Photonics J. 9(3), 1–9 (2017)

    [16] Xue, X., Zheng, Z., Zhou, B.: Soliton regulation in microcavities induced by fundamental–second-harmonic mode coupling. Photonics Res. 6(10), 948–953 (2018)

    [17] Pan, J., Cheng, Z., Huang, T., Song, C., Shum, P.P., Brambilla, G.: Fundamental and third harmonic mode coupling induced single soliton generation in Kerr microresonators. J. Lightwave Technol. 37(21), 5531–5536 (2019)

    [18] Perego, A.M., Turitsyn, S.K., Staliunas, K.: Gain through losses in nonlinear optics. Light Sci. Appl. 7(1), 43 (2018)

    [19] Perego, A.M., Mussot, A., Conforti, M.: Theory of filter-induced modulation instability in driven passive optical resonators. Phys. Rev. A (Coll. Park) 103(1), 013522 (2021)

    [20] Bessin, F., Perego, A.M., Staliunas, K., Turitsyn, S.K., Kudlinski, A., Conforti, M., Mussot, A.: Gain-through-filtering enables tuneable frequency comb generation in passive optical resonators. Nat. Commun. 10(1), 4489 (2019)

    [21] Bechhoefer, J.: Kramers-Kronig, Bode, and the meaning of zero. Am. J. Phys. 79(10), 1053–1059 (2011)

    [22] Lucarini, V., Peiponen, K., Saarinen, J.J., Vartiainen, E.M.: Kramers-Kronig relations in optical materials research. Springer, Berlin (2005)

    [23] Coen, S., Randle, H.G., Sylvestre, T., Erkintalo, M.: Modeling of octave-spanning Kerr frequency combs using a generalized meanfield Lugiato-Lefever model. Opt. Lett. 38(1), 37–39 (2013)

    [24] Wang, Y., Leo, F., Fatome, J., Erkintalo, M., Murdoch, S.G., Coen, S.: Universal mechanism for the binding of temporal cavity solitons. Optica 4(8), 855–863 (2017)

    [25] Tikan, A., Riemensberger, J., Komagata, K., Honl, S., Churaev, M., Skehan, C., Guo, H., Wang, R.N., Liu, J., Seidler, P., Kippenberg, T.J.: Emergent nonlinear phenomena in a driven dissipative photonic dimer. Nat. Phys. 17(5), 604–610 (2021)

    [26] Guo, X., Zou, C.L., Jiang, L., Tang, H.X.: All-optical control of linear and nonlinear energy transfer via the Zeno effect. Phys. Rev. Lett. 120(20), 203902 (2018)

    [27] Wang, S., Wang, Q., Wang, W., Wang, X., Yu, M., Fang, Q., Cai, Y.: Pump condition dependent Kerr frequency comb generation in mid-infrared. Results Phys. 15, 102789 (2019)

    [28] Carmon, T., Yang, L., Vahala, K.: Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12(20), 4742–4750 (2004)

    [29] Jiang, X., Yang, L.: Optothermal dynamics in whispering-gallery microresonators. Light Sci. Appl. 9(1), 24 (2020)

    [30] Godey, C., Balakireva, I.V., Coillet, A., Chembo, Y.K.: Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 89(6), 063814 (2014)

    [31] Chen, N., Zhang, B., Yang, H., Lu, X., He, S., Hu, Y., Chen, Y., Zhang, X., Xu, J.: Stability analysis of generalized Lugiato-Lefever equation with lumped filter for Kerr optical soliton generation in anomalous dispersion regime. In: Proceedings of Asian Communication and Photonics Conference (ACP 2021). Shanghai: IEEE, pp. T4A.187 (2022)

    Boqing Zhang, Nuo Chen, Xinda Lu, Yuntian Chen, Xinliang Zhang, Jing Xu. Dissipative Kerr single soliton generation with extremely high probability via spectral mode depletion[J]. Frontiers of Optoelectronics, 2022, 15(4): 12200
    Download Citation