• Matter and Radiation at Extremes
  • Vol. 9, Issue 2, 027802 (2024)
Kaiguo Chen1、2、*, Bo Chen1、2, Yinan Cui3, Yuying Yu4, Jidong Yu4, Huayun Geng4, Dongdong Kang1、2, Jianhua Wu1、2, Yao Shen5, and Jiayu Dai1、2
Author Affiliations
  • 1College of Science, National University of Defense Technology, Changsha 410073, People’s Republic of China
  • 2Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, People’s Republic of China
  • 3Applied Mechanics Laboratory, Department of Engineering Mechanics, School of Aerospace, Tsinghua University, Beijing 100084, People’s Republic of China
  • 4Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, People’s Republic of China
  • 5Department of Material Science and Technology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
  • show less
    DOI: 10.1063/5.0176138 Cite this Article
    Kaiguo Chen, Bo Chen, Yinan Cui, Yuying Yu, Jidong Yu, Huayun Geng, Dongdong Kang, Jianhua Wu, Yao Shen, Jiayu Dai. On the thermodynamics of plasticity during quasi-isentropic compression of metallic glass[J]. Matter and Radiation at Extremes, 2024, 9(2): 027802 Copy Citation Text show less
    References

    [1] B.Chen, W.Yang, J.Chen, J.-F.Lin, H.Zheng, H.-K.Mao, K.Li. Recent advances in high-pressure science and technology. Matter Radiat. Extremes, 1, 59-75(2016).

    [2] R.Betti, O. A.Hurricane. Inertial-confinement fusion with lasers. Nat. Phys., 12, 435-448(2016).

    [3] H.Takabe, S.Nakai. Principles of inertial confinement fusion–physics of implosion and the concept of inertial fusion energy. Rep. Prog. Phys., 59, 1071(1996).

    [4] C.Cherfils-Clérouin, T. C.Sangster, P. B.Radha, R.Betti, D. D.Meyerhofer, T. R.Boehly, P. W.McKenty, S.Skupsky, V. A.Smalyuk, J. P.Knauer, O. V.Gotchev, S. P.Regan, R. L.McCrory, E.Vianello, V. N.Goncharov. Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution. Phys. Plasmas, 13, 012702(2006).

    [5] C.Stoeckl, W.Seka, D. T.Michel, R. S.Craxton, T. C.Sangster, V. N.Goncharov, J. D.Sethian, A. V.Maximov, P. W.McKenty, J. A.Delettrez, T. R.Boehly, K.Tanaka, J. D.Zuegel, J. M.Soures, T. J. B.Collins, K. S.Anderson, D. R.Harding, W.Theobald, D. D.Meyerhofer, S. X.Hu, J. F.Myatt, A. J.Schmitt, J. A.Marozas, R. L.McCrory, A. A.Solodov, J. P.Knauer, S.Skupsky, S. P.Regan, W. L.Kruer, R.Betti, P. B.Radha, R. W.Short. Direct-drive inertial confinement fusion: A review. Phys. Plasmas, 22, 110501(2015).

    [6] J.Dai, D.Kang, Q.Zeng, Y.Hou. Unified first-principles equations of state of deuterium-tritium mixtures in the global inertial confinement fusion region. Matter Radiat. Extremes, 5, 055401(2020).

    [7] M.Sch?rner, S. A.MacLaren, L.Divol, C. E.Starrett, R.Redmer, O. L.Landen, J.Lütgert, S. H.Glenzer, S. F.Khan, C.Trosseille, M.Bethkenhagen, P. A.Sterne, L.Masse, S.Schumacher, N. R.Shaffer, G. N.Hall, N.Izumi, B.Bachmann, D. O.Gericke, T.D?ppner, D.Kraus, M. O.Sch?lmerich. Platform for probing radiation transport properties of hydrogen at conditions found in the deep interiors of red dwarfs. Phys. Plasmas, 29, 083301(2022).

    [8] B.Remington. Exploring the universe through Discovery Science on the NIF. 2021 IEEE International Conference on Plasma Science (ICOPS), Lake Tahoe, NV, 12-16 September 2021(2021).

    [9] B.Remington. Dynamic materials experiments at ultrahigh pressures and strain rates on the National Ignition Facility laser(2021).

    [10] S. D.Rothman, E.Gumbrell, H. S.Park, S. T.Prisbrey, P. D.Powell, B. A.Remington, P.Graham, A. J.Comley, M. P.Hill, C. E.Wehrenberg, D. C.Swift, A.Krygier, R. E.Rudd, J. M.McNaney, A.Arsenlis, C. M.Huntington. Extreme hardening of Pb at high pressure and strain rate. Phys. Rev. Lett., 123, 205701(2019).

    [11] S.Weber, D.Kumar, G.Korn, N.Jourdain, M.Havlík, D.Kramer, I.Majerová, U.Chaulagain, V. T.Tikhonchuk. The L4n laser beamline of the P3-installation: Towards high-repetition rate high-energy density physics at ELI-beamlines. Matter Radiat. Extremes, 6, 015401(2020).

    [12] D.Riley. Shock and Ramp Compression, Warm Dense Matter(2021).

    [13] D. H.Dolan, A. J.Porwitzky, S. C.Grant, T.Ditmire, T.Ao, K. R.Cochrane, C. T.Seagle, A. C.Bernstein, J.-F.Lin, J.-P.Davis. Equation of state measurements on iron near the melting curve at planetary core conditions by shock and ramp compressions. J. Geophys. Res.: Solid Earth, 126, e2020JB020008(2021).

    [14] Y.-J.Gu, Q.-F.Chen, Y.-S.Lan, H.-Y.Geng, X.-R.Chen, Z.-Q.Wang, J.-Y.Dai, W.Zhang, Y.Hou, L.Liu, Z.-G.Li, G.-J.Li. Multishock to quasi-isentropic compression of dense gaseous deuterium-helium mixtures up to 120 GPa: Probing the sound velocities relevant to planetary interiors. Phys. Rev. Lett., 126, 075701(2021).

    [15] S.Saeki. Empirical determination of the three-dimensional isentropic equation of state of polyethylene. High Pressure Res., 40, 219-234(2020).

    [16] N.Ozaki, E.Brambrink, R.Kodama, A.Benuzzi-Mounaix, T.Vinci, H. G.Wei, M.Koenig, A.Diziere, K.Miyanishi, A.Ravasio. EOS measurements of pressure standard materials using laser-driven ramp-wave compression technique. J. Phys.: Conf. Ser., 215, 012199(2010).

    [17] E.Giraldez, G. W.Collins, P.Patel, S.Pollaine, P.Celliers, D.Hicks, R.Smith, H.Park, B.Maddox, A.Hamza, T.Lorenz, B. A.Remington, S. L.Pape, J.Eggert, D.Braun, D.Ho, R.Wallace, S.Prisbrey, D.Swift. Quasi-isentropic material property studies at extreme pressures: From omega to NIF. J. Phys.: Conf. Ser., 112, 042024(2008).

    [18] J. L.Ding, J. R.Asay. Material characterization with ramp wave experiments. J. Appl. Phys., 101, 073517(2007).

    [19] V.Fortov. Shock Compression Thermodynamics, Intense Shock Waves on Earth and in Space, 19-31(2021).

    [20] D.Swift, A.Higginbotham, R. E.Rudd, F.Tavella, M.Sliwa, B. A.Remington, H. S.Park, D.McGonegle, L.Zepeda-Ruiz, B.Nagler, C.Bolme, A.Lazicki, H. J.Lee, M.Suggit, C. E.Wehrenberg, J. S.Wark. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics. Nature, 550, 496-499(2017).

    [21] E. M.Bringa, R. E.Rudd, J. S.Wark, M.Duchaineau, J.Belak, K.Rosolankova, B. A.Remington, J.Hawreliak, D. H.Kalantar. Shock deformation of face-centred-cubic metals on subnanosecond timescales. Nat. Mater., 5, 805-809(2006).

    [22] B.Militzer, R.Jeanloz, B. K.Godwal, K.Driver, F.González-Cataldo. Model of ramp compression of diamond from ab initio simulations. Phys. Rev. B, 104, 134104(2021).

    [23] J. R.Macdonald. Review of some experimental and analytical equations of state. Rev. Mod. Phys., 41, 316-349(1969).

    [24] E. M.Bringa, B. A.Remington, G.Kimminau, N.Park, J.Hawreliak, A.Higginbotham, E.Reed, J. S.Wark. Molecular dynamics simulations of ramp-compressed copper. Phys. Rev. B, 85, 024112(2012).

    [25] T. C.Germann, X.Zhang, E. N.Hahn, W.Li, P. S.Branicio, X.Yao, B.Feng. Rate dependence and anisotropy of SiC response to ramp and wave-free quasi-isentropic compression. Int. J. Plast., 138, 102923(2021).

    [26] D. C.Swift, T. R.Boehly, R. F.Smith, J. R.Rygg, Y.Ping, B.Yaakobi, G. W.Collins, J. H.Eggert, D. G.Hicks, S.Hamel, D. E.Fratanduono, D. G.Braun, F.Coppari. Solid iron compressed up to 560 GPa. Phys. Rev. Lett., 111, 065501(2013).

    [27] J. R.Rygg, D. C.Swift, A.Higginbotham, D.McGonegle, D. E.Fratanduono, J. V.Bernier, A.Lazicki, J. M.McNaney, C. E.Wehrenberg, R. E.Rudd, M. G.Gorman, J. H.Eggert, M. J.Suggit, D.Erskine, R. F.Smith, F.Coppari, J. S.Wark, D. G.Braun, G. W.Collins, P. G.Heighway, R. G.Kraus. Metastability of diamond ramp-compressed to 2 terapascals. Nature, 589, 532-535(2021).

    [28] D. G.Braun, L. X.Benedict, P. M.Celliers, T. S.Duffy, A. V.Hamza, J.Biener, J. R.Patterson, R.Jeanloz, G. W.Collins, J.Wang, J. H.Eggert, A. E.Lazicki, R. F.Smith, T.Braun, R. E.Rudd. Ramp compression of diamond to five terapascals. Nature, 511, 330-333(2014).

    [29] S.Zhang, R. F.Smith, R. G.Kraus, J. H.Eggert, D. C.Swift, J. M.McNaney, M. C.Marshall, S. J.Ali, F.Coppari, L. E.Kirch, D. G.Braun, M.Millot, D. E.Fratanduono, J. K.Wicks, A.Fernandez-Pa?ella. Probing the solid phase of noble metal copper at terapascal conditions. Phys. Rev. Lett., 124, 015701(2020).

    [30] S. T.Prisbrey, J.Biener, R. F.Smith, D. G.Hicks, G. W.Collins, J. H.Eggert, R. E.Rudd, A. V.Hamza, D. G.Braun, D. K.Bradley. Diamond at 800 GPa. Phys. Rev. Lett., 102, 075503(2009).

    [31] J. R.Asay, J. L.Ding. Numerical study of rate-dependent strength behavior under ramp and shock wave loading. Int. J. Plast., 25, 695-714(2009).

    [32] J. L.Ding. Thermal and mechanical analysis of material response to non-steady ramp and steady shock wave loading. J. Mech. Phys. Solids, 54, 237-265(2006).

    [33] X.Yao, I. J.Beyerlein, W.-R.Jian, X.Zhang, Z.Xie, R.Zhang, S.Xu. Phase transition in medium entropy alloy CoCrNi under quasi-isentropic compression. Int. J. Plast., 157, 103389(2022).

    [34] S.Zhang, K.Ren, S.Li, F.Lu, R.Chen, Y.Tang, S.Chen, R.Ma, R.Wang, H.Liu. Dynamic compression behavior of TiZrNbV refractory high-entropy alloys upon ultrahigh strain rate loading. J. Mater. Sci. Technol., 161, 201-219(2023).

    [35] D. L.Preston, A.Hunter, D. N.Blaschke. Analytic model of the remobilization of pinned glide dislocations: Including dislocation drag from phonon wind. Int. J. Plast., 131, 102750(2020).

    [36] D. J.Steinberg, M. W.Guinan. Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements. J. Phys. Chem. Solids, 35, 1501-1512(1974).

    [37] K. V.Khishchenko, A. E.Mayer. High- and low-entropy layers in solids behind shock and ramp compression waves. Int. J. Mech. Sci., 189, 105971(2021).

    [38] D.McGonegle, H. S.Park, B.Nagler, R. E.Rudd, P. G.Heighway, D.Swift, J. S.Wark, C.Wehrenberg, M. J.Suggit, L.Zepeda-Ruiz, B. A.Remington, A.Higginbotham, M.Sliwa, H. J.Lee, F.Tavella, C. A.Bolme, A.Lazicki. Femtosecond X-ray diffraction studies of the reversal of the microstructural effects of plastic deformation during shock release of tantalum. Phys. Rev. Lett., 120, 265502(2018).

    [39] M. M.Seibert, A. E.Gleason, G. J.Williams, W. E.White, M.Messerschmidt, D.Ratner, A.Higginbotham, P.Hering, J. S.Wark, D. C.Swift, J.Robinson, S.Boutet, D.Milathianaki. Femtosecond visualization of lattice dynamics in shock-compressed matter. Science, 342, 220-223(2013).

    [40] A.Jankowski, P. M.Celliers, R. F.Smith, J. R.Asay, Y. M.Gupta, G. W.Collins, M. J.Edwards, J. H.Eggert. Stiff response of aluminum under ultrafast shockless compression to 110 GPA. Phys. Rev. Lett., 98, 065701(2007).

    [41] C. T.Seagle, T. R.Boehly, X.Gong, R. F.Smith, P. M.Celliers, A.Lazicki, D. N.Polsin, C. A.McCoy, J. R.Rygg, J.-P.Davis, S. J.Burns, D. E.Fratanduono, R. G.Kraus, J. A.Delettrez, D. C.Swift, G. W.Collins, M. C.Gregor, F.Coppari, B. J.Henderson, J. H.Eggert. X-ray diffraction of ramp-compressed aluminum to 475 GPa. Phys. Plasmas, 25, 082709(2018).

    [42] L. E.Hansen, S. J.Burns, J. H.Eggert, D. N.Polsin, J. R.Rygg, M. I.McMahon, R.Paul, A.Lazicki, F.Coppari, G. W.Collins, X.Gong, R. F.Smith, M.Millot, M. F.Huff, B. J.Henderson. Structural complexity in ramp-compressed sodium to 480 GPa. Nat. Commun., 13, 2534(2022).

    [43] R. F.Smith, R. E.Rudd, C. A.Bolme, G. W.Collins, J. H.Eggert, D. C.Swift. High strain-rate plastic flow in Al and Fe. J. Appl. Phys., 110, 123515(2011).

    [44] D. C.Wallace. Irreversible thermodynamics of overdriven shocks in solids. Phys. Rev. B, 24, 5597-5606(1981).

    [45] Z.Zhang, F.Huang, X.Zheng, Y.Wu, T.Chong, Y.Wu, K.Yang. A unified model of anisotropy, thermoelasticity, inelasticity, phase transition and reaction for high-pressure ramp-loaded RDX single crystal. Int. J. Plast., 144, 103048(2021).

    [46] G. I.Taylor, H.Quinney. The latent energy remaining in a metal after cold working. Proc. R. Soc. London, Ser. A, 143, 307-326(1934).

    [47] D. J.Luscher, D. J.Walters, C. A.Bolme, K. J.Ramos, M. A.Buechler. On computing the evolution of temperature for materials under dynamic loading. Int. J. Plast., 111, 188-210(2018).

    [48] J. R.Mayeur, A.Hunter, M. A.Kenamond, D. J.Luscher, H. M.Mourad. Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions. Int. J. Plast., 76, 111-129(2016).

    [49] S.Luo, Z.Li, Z.Li, Y.Cui, T.Wang. A discrete–continuous model of three-dimensional dislocation elastodynamics. Int. J. Plast., 152, 103221(2022).

    [50] J. J.Mason, A. J.Rosakis, G.Ravichandran. On the strain and strain rate dependence of the fraction of plastic work converted to heat: An experimental study using high speed infrared detectors and the Kolsky bar. Mech. Mater, 17, 135-145(1994).

    [51] L. H.Zhang, D.Rittel, S.Osovski. The dependence of the Taylor–Quinney coefficient on the dynamic loading mode. J. Mech. Phys. Solids, 107, 96-114(2017).

    [52] D.Rittel, S.Osovski, J. C.Nieto-Fuentes. On a dislocation-based constitutive model and dynamic thermomechanical considerations. Int. J. Plast., 108, 55-69(2018).

    [53] S.Osovski, J. C.Nieto-Fuentes, A.Venkert, D.Rittel. Reassessment of the dynamic thermomechanical conversion in metals. Phys. Rev. Lett., 123, 255502(2019).

    [54] A.Zubelewicz. Century-long Taylor-Quinney interpretation of plasticity-induced heating reexamined. Sci. Rep., 9, 9088(2019).

    [55] M.Knezevic, D. J.Savage, D. W.Brown, Z.Feng, B.Clausen, T. A.Sisneros, N. C.Ferreri. In-situ high-energy X-ray diffraction and crystal plasticity modeling to predict the evolution of texture, twinning, lattice strains and strength during loading and reloading of beryllium. Int. J. Plast., 150, 103217(2022).

    [56] T.Kitamura, T.Shimada, Z.Li, Q.-l.Xiong. Atomistic investigation on the conversion of plastic work to heat in high-rate shear deformation. Int. J. Plast., 149, 103158(2022).

    [57] V. V.Bulatov, N.Bertin, J. K.Mason, J. C.Stimac. Energy storage under high-rate compression of single crystal tantalum. Acta Mater., 239, 118253(2022).

    [58] J. S.Langer. Statistical thermodynamics of crystal plasticity. J. Stat. Phys, 175, 531-541(2019).

    [59] E.Bouchbinder, J. S.Langer. Nonequilibrium thermodynamics of driven amorphous materials. II. Effective-temperature theory. Phys. Rev. E, 80, 031132(2009).

    [60] J. S.Langer, K. C.Le, T. M.Tran. Thermodynamic dislocation theory of high-temperature deformation in aluminum and steel. Phys. Rev. E, 96, 013004(2017).

    [61] J. S.Langer, T.Lookman, E.Bouchbinder. Thermodynamic theory of dislocation-mediated plasticity. Acta Mater., 58, 3718-3732(2010).

    [62] K. C.Le. Two universal laws for plastic flows and the consistent thermodynamic dislocation theory. Mech. Res. Commun., 109, 103597(2020).

    [63] J. S.Langer, K. C.Le. Scaling confirmation of the thermodynamic dislocation theory. Proc. Natl. Acad. Sci. U. S. A., 117, 29431-29434(2020).

    [64] D.Roy, S.Roy Chowdhury. A non-equilibrium thermodynamic model for viscoplasticity and damage: Two temperatures and a generalized fluctuation relation. Int. J. Plast., 113, 158-184(2019).

    [65] Y.-J.Wang, Z.-C.Xie, S.-C.Dai. Atomistic interpretation of extra temperature and strain-rate sensitivity of heterogeneous dislocation nucleation in a multi-principal-element alloy. Int. J. Plast., 149, 103155(2022).

    [66] V. L.Berdichevsky. Entropy of microstructure. J. Mech. Phys. Solids, 56, 742-771(2008).

    [67] V. L.Berdichevsky. Thermodynamics of microstructure evolution: Grain growth. Int. J. Eng. Sci., 57, 50-78(2012).

    [68] V. L.Berdichevsky. Beyond classical thermodynamics: Dislocation-mediated plasticity. J. Mech. Phys. Solids, 129, 83-118(2019).

    [69] Y.Chen, L.-H.Dai, W.Rao. A constitutive model for metallic glasses based on two-temperature nonequilibrium thermodynamics. Int. J. Plast., 154, 103309(2022).

    [70] P.Steinmann, R.Xiao, C.Tian, Y.Xu. Thermomechanical coupling in glassy polymers: An effective temperature theory. Int. J. Plast., 156, 103361(2022).

    [71] J.Li, F.Shimizu, M.Wakeda, Y.Shibutani, S.Ogata. Atomistic simulation of shear localization in Cu–Zr bulk metallic glass. Intermetallics, 14, 1033-1037(2006).

    [72] J.Zhang, Y.Wang, Y.Wang. Connecting shear localization with the long-range correlated polarized stress fields in granular materials. Nat. Commun., 11, 4349(2020).

    [73] A.Antonelli, R.Alvarez-Donado. Splitting up entropy into vibrational and configurational contributions in bulk metallic glasses: A thermodynamic approach. Phys. Rev. Res., 2, 013202(2020).

    [74] E.Ma, Y. Q.Cheng, H. W.Sheng. Atomic level structure in multicomponent bulk metallic glass. Phys. Rev. Lett., 102, 245501(2009).

    [75] S.Plimpton. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys., 117, 1-19(1995).

    [76] W. M.Brown, S. J.Plimpton, C.Trott, M. J.Stevens, R.Berger, S. G.Moore, T. D.Nguyen, H. M.Aktulga, A. P.Thompson, R.Shan, D. S.Bolintineanu, A.Kohlmeyer, P. S.Crozier, J.Tranchida, P. J.in’t Veld. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun., 271, 108171(2022).

    [77] A. E.Mattsson, W. J.Rider. Artificial viscosity: Back to the basics. Int. J. Numer. Methods Fluids, 77, 400-417(2015).

    [78] S.Maruyama, D.Poulikakos. Microscale Thermophys. Eng., 7, 181-206(2003).

    [79] Z.-Y.Dong, W.-P.Hsieh, Y.Zhou, A. F.Goncharov, X.-J.Chen. Thermal conductivity of materials under pressure. Nat. Rev. Phys., 4, 319-335(2022).

    [80] S.Yang, P.Jin, B.Shi, S.Liu. Lindemann-like rule between average thermal expansion coefficient and glass transition temperature for metallic glasses. J. Non-Cryst. Solids, 503–504, 194-196(2019).

    [81] J. M.Bai, W. K.Luo, H. W.Sheng, F. M.Alamgir, E.Ma. Atomic packing and short-to-medium-range order in metallic glasses. Nature, 439, 419-425(2006).

    [82] M. Z.Li, W. H.Wang, H. L.Peng. Structural signature of plastic deformation in metallic glasses. Phys. Rev. Lett., 106, 135503(2011).

    [83] Y.-J.Wang, L.-H.Dai, P.-H.Cao, D.Han, D.Wei. Statistical complexity of potential energy landscape as a dynamic signature of the glass transition. Phys. Rev. B, 101, 064205(2020).

    [84] R. F.Smith, C. A.Bolme, A.Lazicki, J.Eggert, B. A.Remington, J. S.Wark, A.Higginbotham, P. G.Heighway, H. S.Park, B.Nagler, C.Wehrenberg, F.Tavella, M. J.Suggit, H. J.Lee, M.Sliwa, D.Swift, D.McGonegle, R. E.Rudd. Nonisentropic release of a shocked solid. Phys. Rev. Lett., 123, 245501(2019).

    [85] S.Ogata, J.Li, F.Shimizu. Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater. Trans., 48, 2923-2927(2007).

    [86] A.Stukowski. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng., 18, 015012(2010).

    [87] A. J. C.Ladd, D.Frenkel. New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres. J. Chem. Phys., 81, 3188-3193(1984).

    [88] F. W.Wang, T.Otomo, S.Lan, X. Y.Li, D. L.Abernathy, H. P.Zhang, M. Z.Li, Y.Ren, X. L.Wang. Observation of high-frequency transverse phonons in metallic glasses. Phys. Rev. Lett., 124, 225902(2020).

    [89] K.Samwer, W. L.Johnson. A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett., 95, 195501(2005).

    [90] B.Luo, C.Liu, C.Sun, G.Wang, J.Zhao, F.Tan. Dynamic behaviors of a Zr-based bulk metallic glass under ramp wave and shock wave loading. AIP Adv., 5, 067161(2015).

    [91] T. J.Vogler. On measuring the strength of metals at ultrahigh strain rates. J. Appl. Phys., 106, 053530(2009).

    [92] D.Dini, B.Gurrutxaga-Lerma, D. S.Balint, D. E.Eakins, A. P.Sutton. Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics. Phys. Rev. Lett., 114, 174301(2015).

    [93] F. H.Stillinger. A topographic view of supercooled liquids and glass formation. Science, 267, 1935-1939(1995).

    [94] P. G.Debenedetti, F. H.Stillinger. Energy landscape diversity and supercooled liquid properties. J. Chem. Phys., 116, 3353-3361(2002).

    [95] K. J.Laws, M.Ferry, N. E.Hamilton, R.Mahjoub. Softening of phonon spectra in metallic glasses. npj Comput. Mater., 2, 16029(2016).

    [96] L.-H.Dai, D.Wei, H.-L.Li, J.Yang, Y.-J.Wang, A.Zaccone, M.-Q.Jiang, D.Han. Atomistic structural mechanism for the glass transition: Entropic contribution. Phys. Rev. B, 101, 014113(2020).

    [97] F.Jiang, A.Zaccone, G.Ding, W. H.Wang, M. Q.Jiang, Z.Ling, H. C.Lei, C.Li. Ultrafast extreme rejuvenation of metallic glasses by shock compression. Sci. Adv., 5, eaaw6249(2019).

    [98] M.Zaiser, K.Bay, P.H?hner. Fractal dislocation patterning during plastic deformation. Phys. Rev. Lett., 81, 2470-2473(1998).

    [99] A.Vinogradov, Y.Estrin, I. S.Yasnikov. Evolution of fractal structures in dislocation ensembles during plastic deformation. Phys. Rev. Lett., 108, 205504(2012).

    [100] J. S.Langer, E.Bouchbinder. Nonequilibrium thermodynamics of driven amorphous materials. I. Internal degrees of freedom and volume deformation. Phys. Rev. E, 80, 031131(2009).

    Kaiguo Chen, Bo Chen, Yinan Cui, Yuying Yu, Jidong Yu, Huayun Geng, Dongdong Kang, Jianhua Wu, Yao Shen, Jiayu Dai. On the thermodynamics of plasticity during quasi-isentropic compression of metallic glass[J]. Matter and Radiation at Extremes, 2024, 9(2): 027802
    Download Citation