• Laser & Optoelectronics Progress
  • Vol. 60, Issue 18, 1811002 (2023)
Jie Zhao1、2、**, Xiaoyu Jin1, Dayong Wang1、2、*, Lu Rong1、2, Yunxin Wang1、2, and Shufeng Lin1
Author Affiliations
  • 1Faculty of Science, Beijing University of Technology, Beijing 100124, China
  • 2Beijing Engineering Research Center of Precision Measurement Technology and Instruments, Beijing 100124, China
  • show less
    DOI: 10.3788/LOP231397 Cite this Article Set citation alerts
    Jie Zhao, Xiaoyu Jin, Dayong Wang, Lu Rong, Yunxin Wang, Shufeng Lin. Continuous-Wave Terahertz In-Line Digital Holography Based on Physics-Enhanced Deep Neural Network[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811002 Copy Citation Text show less
    References

    [1] Zhang Y Y, Wang C T, Huai B X et al. Continuous-wave THz imaging for biomedical samples[J]. Applied Sciences, 11, 71(2020).

    [2] Saha A[M]. Terahertz solid-state physics and devices(2020).

    [3] Fosodeder P, Hubmer S, Ploier A et al. Phase-contrast THz-CT for non-destructive testing[J]. Optics Express, 29, 15711-15723(2021).

    [4] Zhai M, Locquet A, Roquelet C et al. Thickness characterization of multi-layer coated steel by terahertz time-of-flight tomography[J]. NDT & E International, 116, 102358(2020).

    [5] Fischer B M, Hoffmann M, Helm H et al. Terahertz time-domain spectroscopy and imaging of artificial RNA[J]. Optics Express, 13, 5205-5215(2005).

    [6] Feng L C, Du C, Yang S X et al. Research on terahertz real-time near-field spectral imaging[J]. Acta Physica Sinica, 71, 164201(2022).

    [7] Valzania L, Feurer T, Zolliker P et al. Terahertz ptychography[J]. Optics Letters, 43, 543-546(2018).

    [8] Heimbeck M S, Everitt H O. Terahertz digital holographic imaging[J]. Advances in Optics and Photonics, 12, 1-59(2020).

    [9] Li Q, Li Y D. Continuous-wave 2.52 terahertz Gabor inline compressive holographic tomography[J]. Applied Physics B, 117, 585-596(2014).

    [10] Li Z Y, Yan Q A, Qin Y et al. Sparsity-based continuous wave terahertz lens-free on-chip holography with sub-wavelength resolution[J]. Optics Express, 27, 702-713(2019).

    [11] Li Z Y, Zou R J, Kong W P et al. Terahertz synthetic aperture in-line holography with intensity correction and sparsity autofocusing reconstruction[J]. Photonics Research, 7, 1391-1399(2019).

    [12] Jin X Y, Zhao J, Wang D Y et al. Iterative denoising phase retrieval method for twin-image elimination in continuous-wave terahertz in-line digital holography[J]. Optics and Lasers in Engineering, 152, 106986(2022).

    [13] Zuo C, Qian J M, Feng S J et al. Deep learning in optical metrology: a review[J]. Light: Science & Applications, 11, 39(2022).

    [14] Meng Z, Ding H, Nie S P et al. Application of deep learning in digital holographic microscopy[J]. Laser & Optoelectronics Progress, 58, 1811006(2021).

    [15] Rivenson Y, Zhang Y B, Günaydın H et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Science & Applications, 7, 17141(2018).

    [16] Sinha A, Lee J, Li S et al. Lensless computational imaging through deep learning[J]. Optica, 4, 1117-1125(2017).

    [17] Wang H, Lyu M, Situ G H. eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction[J]. Optics Express, 26, 22603-22614(2018).

    [18] Wang F, Bian Y M, Wang H C et al. Phase imaging with an untrained neural network[J]. Light: Science & Applications, 9, 77(2020).

    [19] Bai C, Peng T, Min J W et al. Dual-wavelength in-line digital holography with untrained deep neural networks[J]. Photonics Research, 9, 2501-2510(2021).

    [20] Li Y D, Hu W D, Zhang X et al. Adaptive terahertz image super-resolution with adjustable convolutional neural network[J]. Optics Express, 28, 22200-22217(2020).

    [21] Lei T, Tobin B, Liu Z H et al. A terahertz time-domain super-resolution imaging method using a local-pixel graph neural network for biological products[J]. Analytica Chimica Acta, 1181, 338898(2021).

    [22] Wang Y, Qi F, Wang J K. Terahertz image super-resolution based on a complex convolutional neural network[J]. Optics Letters, 46, 3123-3126(2021).

    [23] Cheng K Y, Li Q. Deep learning for reconstruction of continuous terahertz in⁃line digital holography[J]. Chinese Journal of Lasers, 50, 1914001(2023).

    [24] Hack E, Valzania L, Gäumann G et al. Comparison of thermal detector arrays for off-axis THz holography and real-time THz imaging[J]. Sensors, 16, 221(2016).

    [25] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015, 9351, 234-241(2015).

    [26] Goodman J W[M]. Introduction to Fourier optics(2005).

    [27] Kingma D, Ba J. Adam: a method for stochastic optimization[EB/OL]. https://arxiv.org/abs/1412.6980

    [28] Latychevskaia T, Fink H W. Solution to the twin image problem in holography[J]. Physical Review Letters, 98, 233901(2007).

    [29] Gao Y H, Cao L C. Iterative projection meets sparsity regularization: towards practical single-shot quantitative phase imaging with in-line holography[J]. Light: Advanced Manufacturing, 4, 6(2023).

    [30] Channappayya S S, Bovik A C, Caramanis C et al. Design of linear equalizers optimized for the structural similarity index[J]. IEEE Transactions on Image Processing, 17, 857-872(2008).

    [31] Mittal A, Soundararajan R, Bovik A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 20, 209-212(2013).

    [32] Latychevskaia T, Fink H W. Reconstruction of purely absorbing, absorbing and phase-shifting, and strong phase-shifting objects from their single-shot in-line holograms[J]. Applied Optics, 54, 3925-3932(2015).

    Jie Zhao, Xiaoyu Jin, Dayong Wang, Lu Rong, Yunxin Wang, Shufeng Lin. Continuous-Wave Terahertz In-Line Digital Holography Based on Physics-Enhanced Deep Neural Network[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811002
    Download Citation