• Infrared and Laser Engineering
  • Vol. 53, Issue 2, 20230252 (2024)
Junfeng Cao1、2、3、4, Qinghai Ding5, and Haibo Luo1、2、3
Author Affiliations
  • 1Key Laboratory of Opto-Electronic Information Processing, Chinese Academy of Sciences, Shenyang 110016, China
  • 2Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
  • 3Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • 5Space Star Technology Co., Ltd., Beijing 100086, China
  • show less
    DOI: 10.3788/IRLA20230252 Cite this Article
    Junfeng Cao, Qinghai Ding, Haibo Luo. Infrared image super-resolution based on spatially variant blur kernel calibration[J]. Infrared and Laser Engineering, 2024, 53(2): 20230252 Copy Citation Text show less
    References

    [1] Dong C, Loy C C, He K, et al. Learning a deep convolutional wk f image superresolution [C]European Conference on Computer Vision. Cham: Springer, 2014: 184199.

    [2] Kim J, Lee J K, Lee K M. Deeplyrecursive convolutional wk f image superresolution [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2016: 16371645.

    [3] Lim B, Son S, Kim H, et al. Enhanced deep residual wks f single image superresolution [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition Wkshops, 2017: 136144.

    [4] Zhang Y, Li K, Li K, et al. Image superresolution using very deep residual channel attention wks [C]Proceedings of the European Conference on Computer Vision (ECCV), 2018: 286301.

    [5] Xiu Zhang, Wei Zhou, Zhemin Duan, . Convolutional sparse auto-encoder for image super-resolution reconstruction. Infrared and Laser Engineering, 48, 0126005(2019).

    [6] Zikang Wei, Yunqing Liu. Gray image super-resolution reconstruction based on improved RDN method. Infrared and Laser Engineering, 49, 20200173(2020).

    [7] A Liu, Y Liu, J Gu, et al. Blind image super-resolution: A survey and beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 5461-5480(2023).

    [8] Gu J, Lu H, Zuo W, et al. Blind superresolution with iterative kernel crection [C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition, 2019: 16041613.

    [9] BellKligler S, Shocher A, Irani M. Blind superresolution kernel estimation using an internalgan [C]Advances in Neural Infmation Processing Systems, 2019: 284293.

    [10] Liang J, Zhang K, Gu S, et al. Flowbased kernel pri with application to blind superresolution [C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition, 2021: 1060110610.

    [11] Joshi N, Szeliski R, Kriegman D J. PSF estimation using sharp edge prediction [C]2008 IEEE Conference on Computer Vision Pattern Recognition. IEEE, 2008: 18.

    [12] Kee E, Paris S, Chen S, et al. Modeling removing spatiallyvarying optical blur [C]2011 IEEE International Conference on Computational Photography (ICCP). IEEE, 2011: 18.

    [13] Cai J, Zeng H, Yong H, et al. Toward realwld single image superresolution: A new benchmark a new model [C]Proceedings of the IEEECVF International Conference on Computer Vision, 2019: 30863095.

    [14] Liang J, Sun G, Zhang K, et al. Mutual affine wk f spatially variant kernel estimation in blind image superresolution [C]Proceedings of the IEEECVF International Conference on Computer Vision, 2021: 40964105.

    [15] Zhang K, Gool L V, Timofte R. Deep unfolding wk f image superresolution [C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition, 2020: 32173226.

    Junfeng Cao, Qinghai Ding, Haibo Luo. Infrared image super-resolution based on spatially variant blur kernel calibration[J]. Infrared and Laser Engineering, 2024, 53(2): 20230252
    Download Citation