• Laser & Optoelectronics Progress
  • Vol. 61, Issue 9, 0906004 (2024)
Junchao Dong1、2、3, Mingming Luo1、2、3, Jianfei Liu1、2、3、*, and Wenrong Yang4
Author Affiliations
  • 1School of Electricity and Information Engineering, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • 3Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
  • 4State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China
  • show less
    DOI: 10.3788/LOP231432 Cite this Article Set citation alerts
    Junchao Dong, Mingming Luo, Jianfei Liu, Wenrong Yang. Damage Detection Method for Wind Turbine Blade Based on Optical Frequency Domain Reflectometry[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0906004 Copy Citation Text show less
    References

    [1] Fang K, Zhou Y H, Wang S et al. Assessing national renewable energy competitiveness of the G20: a revised Porter’s Diamond Model[J]. Renewable and Sustainable Energy Reviews, 93, 719-731(2018).

    [2] Doliński L, Krawczuk M. Damage detection in turbine wind blades by vibration based methods[J]. Journal of Physics: Conference Series, 181, 012086(2009).

    [3] Liu W Y, Tang B P, Han J G et al. The structure healthy condition monitoring and fault diagnosis methods in wind turbines: a review[J]. Renewable and Sustainable Energy Reviews, 44, 466-472(2015).

    [4] Márquez F P G, Tobias A M, Pérez J M P et al. Condition monitoring of wind turbines: techniques and methods[J]. Renewable Energy, 46, 169-178(2012).

    [5] Yang R Z, He Y Z, Zhang H. Progress and trends in nondestructive testing and evaluation for wind turbine composite blade[J]. Renewable and Sustainable Energy Reviews, 60, 1225-1250(2016).

    [6] Gómez Muñoz C Q, García Marquez F P, Hernandez Crespo B et al. Structural health monitoring for delamination detection and location in wind turbine blades employing guided waves[J]. Wind Energy, 22, 698-711(2019).

    [7] Taraghi I, Lopato P, Paszkiewicz S et al. X-ray and terahertz imaging as non-destructive techniques for defects detection in nanocomposites foam-core sandwich panels containing carbon nanotubes[J]. Polymer Testing, 79, 106084(2019).

    [8] Galleguillos C, Zorrilla A, Jimenez A et al. Thermographic non-destructive inspection of wind turbine blades using unmanned aerial systems[J]. Plastics, Rubber and Composites, 44, 98-103(2015).

    [9] Park J W, Im K H, Yang I Y et al. Terahertz radiation NDE of composite materials for wind turbine applications[J]. International Journal of Precision Engineering and Manufacturing, 15, 1247-1254(2014).

    [10] Ciang C C, Lee J R, Bang H J. Structural health monitoring for a wind turbine system: a review of damage detection methods[J]. Measurement Science and Technology, 19, 122001(2008).

    [11] Garg D P, Zikry M A, Anderson G L. Current and potential future research activities in adaptive structures: an ARO perspective[J]. Smart Materials and Structures, 10, 610-623(2001).

    [12] Dan D Y, Ding K Q, Shu A Q. Optimization and test of fiber Bragg grating strain sensor with circular structure[J]. Laser & Optoelectronics Progress, 59, 1728002(2022).

    [13] Guemes A, Fernández-López A, Díaz-Maroto P F. A permanent inspection system for damage detection at composite laminates, based on distributed fiber optics sensing[EB/OL]. https://www.?ndt.?net/article/aero2016/papers/AlfredoGuemes.pdf

    [14] Wu H J, Liu X Y, Rao Y J. Processing and application of fiber optic distributed sensing signal based on Φ-OTDR[J]. Laser & Optoelectronics Progress, 58, 1306003(2021).

    [15] Tang C, Lin J K, Ouyang H et al. Research on intelligent recognition technology based on Φ-OTDR[J]. Optical Communication Technology, 46, 8-12(2022).

    [16] Zhao L J, Wei Y J, Xu Z N. Research progress of vibration event recognition classifier based on Φ-OTDR[J]. Optical Communication Technology, 47, 1-5(2023).

    [17] Naruse H, Tateda M, Ohno H et al. Dependence of the Brillouin gain spectrum on linear strain distribution for optical time-domain reflectometer-type strain sensors[J]. Applied Optics, 41, 7212-7217(2002).

    [18] Eickhoff W, Ulrich R. Optical frequency domain reflectometry in single-mode fiber[J]. Applied Physics Letters, 39, 693-695(1981).

    [19] Güemes A, Fernández-López A, Díaz-Maroto P F et al. Local and global approaches for damage detection in composite structures by fiber optic sensor[C](2017).

    [20] Yin G L, Xu Z, Jiang R et al. Optical fiber distributed three-dimensional shape sensing technology based on optical frequency-domain reflectometer[J]. Acta Optica Sinica, 42, 0106002(2022).

    [21] Jothibasu S, Du Y, Anandan S et al. Spatially continuous strain monitoring using distributed fiber optic sensors embedded in carbon fiber composites[J]. Optical Engineering, 58, 072004(2019).

    [22] Mills J A, Hamilton A W, Gillespie D I et al. Identifying defects in aerospace composite sandwich panels using high-definition distributed optical fibre sensors[J]. Sensors, 20, 6746(2020).

    [23] Cazzulani G, Cinquemani S, Benedetti L et al. Load estimation and vibration monitoring of scale model wind turbine blades through optical fiber sensors[J]. Engineering Research Express, 3, 025036(2021).

    [24] Yakuhina A, Kadochkin A, Svetukhin V et al. Investigation of side wall roughness effect on optical losses in a multimode Si3N4 waveguide formed on a quartz substrate[J]. Photonics, 7, 104(2020).

    [25] Venkatesh S, Sorin W V. Phase noise considerations in coherent optical FMCW reflectometry[J]. Journal of Lightwave Technology, 11, 1694-1700(1993).

    [26] McGuigan A P, Briggs G A D, Burlakov V M et al. An elastic-plastic shear lag model for fracture of layered coatings[J]. Thin Solid Films, 424, 219-223(2003).

    [27] Hoffmann S, Östlund F, Michler J et al. Fracture strength and Young’s modulus of ZnO nanowires[J]. Nanotechnology, 18, 205503(2007).

    Junchao Dong, Mingming Luo, Jianfei Liu, Wenrong Yang. Damage Detection Method for Wind Turbine Blade Based on Optical Frequency Domain Reflectometry[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0906004
    Download Citation