• Journal of Inorganic Materials
  • Vol. 38, Issue 6, 693 (2023)
Tianmin GUO1, Jiangbo DONG2, Zhengpeng CHEN2, Mumin RAO2, Mingfei LI2, Tian LI1, and Yihan LING1、*
Author Affiliations
  • 11. School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
  • 22. Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou 510000, China
  • show less
    DOI: 10.15541/jim20220551 Cite this Article
    Tianmin GUO, Jiangbo DONG, Zhengpeng CHEN, Mumin RAO, Mingfei LI, Tian LI, Yihan LING. Enhanced Compatibility and Activity of High-entropy Double Perovskite Cathode Material for IT-SOFC[J]. Journal of Inorganic Materials, 2023, 38(6): 693 Copy Citation Text show less
    References

    [1] B C H STEELE, A HEINZEL. Materials for fuel-cell technologies. Nature, 414, 345(2001).

    [2] M GUO, H TU, S LI, Q YU et al. Fabrication and characterization of functionally graded cathodes based on in-situ formed La0.6Sr0.4CoO3-δ for intermediate temperature SOFCs. Journal of Inorganic Materials, 29, 621(2014).

    [3] Y LING, T GUO, Y GUO et al. New two-layer Ruddlesden-Popper cathode materials for protonic ceramics fuel cells. Journal of Advanced Ceramics, 10, 1052(2021).

    [4] F LIU, Z ZHAO, Y MA et al. Robust Joule-heating ceramic reactors for catalytic CO oxidation. Journal of Advanced Ceramics, 11, 1163(2022).

    [5] Q ZHOU, F WANG, Y SHEN et al. Performances of LnBaCo2O5+δ-Ce0.8Sm0.2O1.9 composite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 195, 2174(2010).

    [6] H JIN, H WANG, H ZHANG et al. Synthesis and characterization of GdBaCo2O5+δ cathode material by glycine-nitrate process. Journal of Inorganic Materials, 27, 751(2012).

    [7] Y TAN, R WANG, X HU et al. Comparison of the oxygen reduction mechanisms in a GBCO-SDC-impregnated cathode and a GBCO cathode. Journal of Applied Electrochemistry, 49, 1035(2019).

    [8] Q ZHOU, Y ZHANG, Y SHEN et al. Layered perovskite GdBaCuCoO5+δ cathode material for intermediate-temperature solid oxide fuel cells. Journal of the Electrochemical Society, 157, B628(2010).

    [9] X DING, C CUI, L GUO. Thermal expansion and electrochemical performance of La0.7Sr0.3CuO3-δ-Sm0.2Ce0.8O2-δ composite cathode for IT-SOFCs. Journal of Alloys and Compounds, 481, 845(2009).

    [10] X KONG, G LIU, Z YI et al. NdBaCu2O5+δ and NdBa0.5Sr0.5Cu2O5+δ layered perovskite oxides as cathode materials for IT-SOFCs. International Journal of Hydrogen Energy, 40, 16477(2015).

    [11] J BURLEY, J MITCHELL, S SHORT et al. Structural and magnetic chemistry of NdBaCo2O5+δ. Journal of Solid State Chemistry, 170, 339(2003).

    [12] K ASAI, A YONEDA, O YOKOKURA et al. Two spin-state transitions in LaCoO3. Journal of the Physical Society of Japan, 67, 290(1998).

    [13] Y KIM, A MANTHIRAM. Layered LnBaCo2-xCuxO5+δ (0≤x≤1.0) perovskite cathodes for intermediate-temperature solid oxide fuel cells. Journal of the Electrochemical Society, 158, B276(2010).

    [14] X HUANG, J FENG, H R ABDELLATIF et al. Electrochemical evaluation of double perovskite PrBaCo2-xMnxO5+δ (x=0, 0.5, 1) as promising cathodes for IT-SOFCs. International Journal of Hydrogen Energy, 43, 8962(2018).

    [15] F JIN, J LI, Y WANG et al. Evaluation of Fe and Mn co-doped layered perovskite PrBaCo2/3Fe2/3Mn1/2O5+δ as a novel cathode for intermediate-temperature solid-oxide fuel cell. Ceramics International, 44, 22489(2018).

    [16] L LI, F JIN, Y SHEN et al. Cobalt-free double perovskite cathode GdBaFeNiO5+δ and electrochemical performance improvement by Ce0.8Sm0.2O1.9 impregnation for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 182, 682(2015).

    [17] C M ROST, E SACHET, T BORMAN et al. Entropy-stabilized oxides. Nature Communications, 6, 8485(2015).

    [18] Y YANG, L MA, G Y GAN et al. Investigation of thermodynamic properties of high entropy (TaNbHfTiZr)C and (TaNbHfTiZr)N. Journal of Alloys and Compounds, 788, 1076(2019).

    [19] C OSES, C TOHER, S CURTAROLO. High-entropy ceramics. Nature Reviews Materials, 5, 295(2020).

    [20] X HAN, Y YANG, Y FAN et al. New approach to enhance Sr-free cathode performance by high-entropy multi-component transition metal coupling. Ceramics International, 47, 17383(2021).

    [21] Y YANG, H BAO, H NI et al. A novel facile strategy to suppress Sr segregation for high-entropy stabilized La0.8Sr0.2MnO3-δ cathode. Journal of Power Sources, 482, 228959(2021).

    [22] Y LING, X HAN, Y YANG et al. Stable high-entropy double perovskite cathode SmBa(Mn0.2Fe0.2Co0.2Ni0.2Cu0.2)2O5+δ for intermediate- temperature solid oxide fuel cells. Journal of the Chinese Ceramic Society, 50, 219(2022).

    [23] W SONG, Z MA, Y YANG et al. Characterization and polarization DRT analysis of direct ethanol solid oxide fuel cells using low fuel partial pressures. International Journal of Hydrogen Energy, 45, 14480(2020).

    [24] X SHAO, W D RICKARD, D DONG et al. High performance anode with dendritic porous structure for low temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 43, 17849(2018).

    [25] K ZHANG, L GE, R RAN et al. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Materialia, 56, 4876(2008).

    [26] J H KIM, A MANTHIRAM. Layered NdBaCo2-xNixO5+δ perovskite oxides as cathodes for intermediate temperature solid oxide fuel cells. Electrochimica Acta, 54, 7551(2009).

    [27] Z ZHAO, H CHEN, H XIANG et al. High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications. Journal of Advanced Ceramics, 9, 303(2020).

    [28] S J LEE, D S KIM, S H JO et al. Electrochemical properties of GdBaCo2/3Fe2/3Cu2/3O5+δ-CGO composite cathodes for solid oxide fuel cell. Ceramics International, 38, S493(2012).

    [29] S LI, L ZHANG, T XIA et al. Synergistic effect study of EuBa0.98Co2O5+δ-Ce0.8Sm0.2O1.9 composite cathodes for intermediate- temperature solid oxide fuel cells. Journal of Alloys and Compounds, 771, 513(2019).

    [30] Y YANG, Y LIU, Z CHEN et al. Enhanced conversion efficiency and coking resistance of solid oxide fuel cells with vertical- microchannel anode fueled in CO2 assisted low-concentration coal-bed methane. Separation and Purification Technology, 288, 120665(2022).

    [31] T DAI, B SUN, Q YI et al. The effect of pore former on the microstructure and performance of SOFC cathode. Guangzhou Chemical Industry, 41, 7(2013).

    [32] T LI, Y YANG, X WANG et al. Enhance coking tolerance of high-performance direct carbon dioxide-methane solid oxide fuel cells with an additional internal reforming catalyst. Journal of Power Sources, 512, 230533(2021).

    [33] M KORNELY, N MENZLER, A WEBER et al. Degradation of a high performance SOFC cathode by Cr-poisoning at OCV-conditions. Fuel Cells, 13, 506(2013).

    [34] B LIU, H MUROYAMA, T MATSUI et al. Analysis of impedance spectra for segmented-in-series tubular solid oxide fuel cells. Journal of the Electrochemical Society, 157, B1858(2010).

    Tianmin GUO, Jiangbo DONG, Zhengpeng CHEN, Mumin RAO, Mingfei LI, Tian LI, Yihan LING. Enhanced Compatibility and Activity of High-entropy Double Perovskite Cathode Material for IT-SOFC[J]. Journal of Inorganic Materials, 2023, 38(6): 693
    Download Citation