• Photonics Research
  • Vol. 12, Issue 5, 895 (2024)
Xueer Chen1, Longfang Ye2, and Daquan Yu1、3、*
Author Affiliations
  • 1School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
  • 2Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, China
  • 3Xiamen Sky Semiconductor Technology Co., Ltd., Xiamen 361026, China
  • show less
    DOI: 10.1364/PRJ.519652 Cite this Article Set citation alerts
    Xueer Chen, Longfang Ye, Daquan Yu. Terahertz sensing with a 3D meta-absorbing chip based on two-photon polymerization printing[J]. Photonics Research, 2024, 12(5): 895 Copy Citation Text show less
    References

    [1] H. Pan, H. Zhang. Broadband polarization-insensitive coherent rasorber in terahertz metamaterial with enhanced anapole response and coupled toroidal dipole modes. Adv. Opt. Mater., 10, 2101688(2022).

    [2] Y. Sun, Y. Wang, H. Ye. Switchable bifunctional metasurface based on VO2 for ultra-broadband polarization conversion and perfect absorption in same infrared waveband. Opt. Commun., 503, 127442(2022).

    [3] Z. Cui, Y. Wang, Y. Shi. Significant sensing performance of an all-silicon terahertz metasurface chip for Bacillus thuringiensis Cry1Ac protein. Photon. Res., 10, 740-746(2022).

    [4] X. Zhao, J. Zhang, K. Fan. Nonlinear terahertz metamaterial perfect absorbers using GaAs [Invited]. Photon. Res., 4, A16-A21(2016).

    [5] Y. Chen, K. Chen, D. Zhang. Ultrabroadband microwave absorber based on 3D water microchannels. Photon. Res., 9, 1391-1396(2021).

    [6] X. F. Jing, G. H. Qin, P. Zhang. Broadband silicon-based tunable metamaterial microfluidic sensor. Photon. Res., 10, 2876-2885(2022).

    [7] W. Wang, F. Yan, S. Tan. Enhancing sensing capacity of terahertz metamaterial absorbers with a surface-relief design. Photon. Res., 8, 519-527(2020).

    [8] H. Cheng, Z. Liu, S. Chen. Emergent functionality and controllability in few-layer metasurfaces. Adv. Mater., 27, 5410-5421(2015).

    [9] Y. Huang, R. Yang, T. Xiao. Wafer-scale self-assembled 2.5D metasurface for efficient near-field and far-field electromagnetic manipulation. Appl. Surf. Sci., 601, 154244(2022).

    [10] K. Aydin, V. Ferry, R. Briggs. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun., 2, 517(2011).

    [11] J. Hendrickson, S. Vangala, C. Dass. Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption. ACS Photon., 5, 776-781(2018).

    [12] M. Kenney, J. Grant, Y. Shah. Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers. ACS Photon., 4, 2604-2612(2017).

    [13] T. Cao, K. Liu, L. Lu. Large-area broadband near-perfect absorption from a thin chalcogenide film coupled to gold nanoparticles. ACS Appl. Mater. Interfaces, 11, 5176-5182(2019).

    [14] W. Yu, Y. Lu, X. Chen. Large-area, broadband, wide-angle plasmonic metasurface absorber for midwavelength infrared atmospheric transparency window. Adv. Opt. Mater., 7, 1900841(2019).

    [15] H. Zhang, X. Feng, Y. Luo. Colloidal self-assembly based all-metal metasurface absorbers to achieve broadband, polarization-independent light absorption at UV-Vis frequencies. Appl. Surf. Sci., 584, 152624(2022).

    [16] Z. Liu, S. Du, A. Cui. High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials. Adv. Mater., 29, 1606298(2017).

    [17] R. Pan, Z. Liu, W. Zhu. Asymmetrical chirality in 3D bended metasurface. Adv. Funct. Mater., 31, 2100689(2021).

    [18] S. Yang, Z. Liu, L. Jin. Surface plasmon polariton mediated multiple toroidal resonances in 3D folding metamaterials. ACS Photon., 4, 2650-2658(2017).

    [19] Y. Liang, K. Koshelev, F. C. Zhang. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett., 20, 6351-6356(2020).

    [20] Y. Liang, H. Lin, S. R. Lin. Hybrid anisotropic plasmonic metasurfaces with multiple resonances of focused light beams. Nano Lett., 21, 8917-8923(2021).

    [21] M. Tseng, Z. Lin, H. Y. Kuo. Stress-induced 3D chiral fractal metasurface for enhanced and stabilized broadband near-field optical chirality. Adv. Opt. Mater., 7, 1900617(2019).

    [22] L. Huang, Z. Hong, Q. Chen. Imaging/nonimaging microoptical elements and stereoscopic systems based on femtosecond laser direct writing. Light Adv. Manuf., 4, 543-569(2024).

    [23] L. Qi, C. Liu, S. A. Shah. A broad dual-band switchable graphene-based terahertz metamaterial absorber. Carbon, 153, 179-188(2019).

    [24] T. Sang, S. Dereshgi, W. Hadibrata. Highly efficient light absorption of monolayer graphene by quasi-bound state in the continuum. Nanomaterials, 11, 484(2021).

    [25] P. Spinelli, M. Hebbink, R. de Waele. Optical impedance matching using coupled plasmonic nanoparticle arrays. Nano Lett., 11, 1760-1765(2011).

    [26] Y. Li, C. Lin, K. Li. Nanoparticle-on-mirror metamaterials for full-spectrum selective solar energy harvesting. Nano Lett., 22, 5659-5666(2022).

    [27] G. Sun, Y. Chen, Q. Wang. Polarization- and angle-insensitive broadband long wavelength infrared absorber based on coplanar four-sized resonators. Opt. Express, 31, 26344-26354(2023).

    [28] H. Zhu, Y. Zhang, L. Ye. A high Q-factor metamaterial absorber and its refractive index sensing characteristics. IEEE Trans. Microw. Theory Tech., 70, 5383-5391(2022).

    [29] D. Wang, K. Xu, S. Luo. A high Q-factor dual-band terahertz metamaterial absorber and its sensing characteristics. Nanoscale, 15, 3398-3407(2023).

    [30] Y. Wang, D. Zhu, Z. Cui. Properties and sensing performance of all-dielectric metasurface THz absorbers. IEEE Trans. Terahertz Sci. Technol., 10, 599-605(2020).

    [31] G. Deng, L. Fang, H. Mo. A metamaterial-based absorber for liquid sensing in terahertz regime. IEEE Sens. J., 22, 21659-21665(2022).

    Xueer Chen, Longfang Ye, Daquan Yu. Terahertz sensing with a 3D meta-absorbing chip based on two-photon polymerization printing[J]. Photonics Research, 2024, 12(5): 895
    Download Citation