• Journal of Inorganic Materials
  • Vol. 36, Issue 5, 535 (2021)
Hanqin LIANG, Jinwei YIN, Kaihui ZUO, Yongfeng XIA, Dongxu YAO, and Yuping ZENG*
Author Affiliations
  • State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • show less
    DOI: 10.15541/jim20200211 Cite this Article
    Hanqin LIANG, Jinwei YIN, Kaihui ZUO, Yongfeng XIA, Dongxu YAO, Yuping ZENG. Mechanical and Dielectric Properties of Hot-pressed Si3N4 Ceramics with BaTiO3 Addition[J]. Journal of Inorganic Materials, 2021, 36(5): 535 Copy Citation Text show less
    References

    [1] XUN YE, WEN LEI, WEN-ZHONG LU. Microwave dielectric characteristics of Nb2O5-added 0.9Al2O3-0.1TiO2 ceramics. Ceramics International, 35, 2131-2134(2009).

    [2] YING DAI, TENG GUO, XIN-MEI PEI et al. Effects of MCAS glass additives on dielectric properties of Al2O3-TiO2 ceramics. Materials Sciences and Engineering A, 475, 76-80(2008).

    [3] JIN-MIN CHEN, HUAN-PING WANG, SI-QIAO FENG et al. Effects of CaSiO3 addition on sintering behavior and microwave dielectric properties of Al2O3 ceramics. Ceramics International, 37, 989-993(2011).

    [4] KAI-XIN SONG, SHU-YA WU, XIANG-MING CHEN. Effects of Y2O3 addition on microwave dielectric characteristics of Al2O3 ceramics. Materials Letters, 61, 3357-3360(2007).

    [5] Y MIYAUCHI, Y OHISHI, S MIYAKE et al. Improvement of the dielectric properties of rutile-doped Al2O3 ceramics by annealing treatment. Journal of the European Ceramic Society, 26, 2093-2096(2006).

    [6] A KUMAR, A GOKHALE, S GHOSH et al. Effect of nano-sized sintering additives on microstructure and mechanical properties of Si3N4 ceramics. Materials Sciences and Engineering A, 750, 132-140(2019).

    [7] XIAO-MING DUAN, DE-CHANG JIA, JIE DENG et al. Mechanical and dielectric properties of gelcasted Si3N4 porous ceramic using CaHPO4 as an additive. Ceramics International, 38, 4363-4367(2012).

    [8] YOU ZHOU, H HYUGA, D KUSANO et al. A tough silicon nitride ceramic with high thermal conductivity. Advanced Materials, 23, 4563-4567(2011).

    [9] XIANG-MING LI, LI-TONG ZHANG, XIAO-WEI YIN. Effect of chemical vapor deposition of Si3N4, BN and B4C coatings on the mechanical and dielectric properties of porous Si3N4 ceramic. Scripta Materials, 66, 33-36(2012).

    [10] RU-BING ZHANG, DAI-NING FANG, YONG-MAO PEI et al. Microstructure, mechanical and dielectric properties of highly porous silicon nitride ceramics produced by a new water-based freeze casting. Ceramics International, 38, 4373-4377(2012).

    [11] S J LEE, S BAEK. Effect of SiO2 content on the microstructure, mechanical and dielectric properties of Si3N4 ceramics. Ceramics International, 42, 9921-9925(2016).

    [12] SHENG-JIN WANG, DE-CHANG JIA, ZHI-HUA YANG et al. Effect of BN content on microstructures, mechanical and dielectric properties of porous BN/Si3N4 composite ceramics prepared by gel casting. Ceramics International, 39, 4231-4237(2013).

    [13] M T BUSCAGIA, V BUSCAGLIA, M VIVIANI et al. Ferroelectric properties of dense nanocrystalline BaTiO3 ceramics. Nanotechnology, 15, 1113-1117(2004).

    [14] N HIROSE, A R WEST. Impedance spectroscopy of undoped BaTiO3 ceramics. Journal of the American Ceramic Society, 79, 1633-1641(1996).

    [15] T MURAKAMI, T MIYASHITA, M NAKAHARA et al. Effect of rare-earth ions on electrical conductivity of BaTiO3 ceramics. Journal of the American Ceramic Society, 56, 294-297(1973).

    [16] A G EVANS. Fracture Toughness: The Role of Indentation Techniques. In Fracture Mechanics Applied to Brittle Materials (Freiman, W., ed.). ASTM STP 678. West Conshohocken, PA, 112-135(1979).

    [17] ZHI-GUO XING, HAI-DOU WANG, LI-NA ZHU et al. Properties of the BaTiO3 coating prepared by supersonic plasma spraying. Journal of the Alloys and Compounds, 582, 246-252(2014).

    [18] WEI-MING GUO, JUN-JIE YU, HUA-TAI LIN. A Equiaxial-Grain β-Si3N4+TiN+O-Sialon Composite and Its Preparation Method. Chinese, Patent: 201610279603.9, 09, 21(2016).

    [19] L M KOVBA, L N LYKOVA, E V ANTIPOV et al. Double oxides of barium and aluminum. Russian Journal of Inorganic Chemistry, 32, 301-302(1987).

    [20] HONG-HUI DING, YUAN HU, XIAO-LEI LI et al. Microstructure, mechanical properties and sintering mechanism of pressureless- sintered porous Si3N4 ceramics with YbF3-MgF2 composite sintering aids. Ceramics International, 46, 2558-2564(2018).

    [21] R M WILLAMS. Linear thermal expansion of hot-pressed Si3N4. Journal of the American Ceramic Society, 63, 108-109(1980).

    [22] XIAO-QI SHI. Preparation and Properties of TiN-Al2O3 Composites. Xi'an: Dissertation of Xi'an University of Architecture and Technology(2007).

    [23] E Y SUN, P F BECHER, K P PLUCKNETT et al. Microstructural design of silicon nitride with improved fracture toughness: II, effects of yttria and alumina additives. Journal of the American Ceramic Society, 81, 2831-2840(1998).

    [24] F J PANETO, J L PEREIRA, J O LIMA et al. Effect of porosity on hardness of Al2O3-Y3Al5O12 ceramic composite. International Journal of Refractory Metals and Hard Materials, 45, 365-368(2015).

    [25] J DUSZA, T ESCHNER, K RUNDGREN. Hardness anisotropy in bimodal grained gas pressure sintered Si3N4. Journal of Materials Science Letter, 16, 1664-1667(1997).

    [26] A BABAPOOR, M S ASL, Z AHMADI et al. Effects of spark plasma sintering temperature on densification, hardness and thermal conductivity of titanium carbide. Ceramics International, 44, 14541-14546(2018).

    [27] XIANG-MING LI, XIAO-WEI YIN, LI-TONG ZHANG et al. Mechanical and dielectric properties of porous Si3N4-SiO2 composite ceramics. Materials Science and Engineering A, 500, 63-69(2009).

    [28] QI-LONG ZHANG, HUI YANG, JIA-LI ZOU et al. Sintering and dielectric properties of Al2O3 ceramics doped by TiO2 and CuO. Journal of Electroceramics, 18, 225-229(2007).

    Hanqin LIANG, Jinwei YIN, Kaihui ZUO, Yongfeng XIA, Dongxu YAO, Yuping ZENG. Mechanical and Dielectric Properties of Hot-pressed Si3N4 Ceramics with BaTiO3 Addition[J]. Journal of Inorganic Materials, 2021, 36(5): 535
    Download Citation