• Advanced Photonics
  • Vol. 6, Issue 1, 016006 (2024)
Bingxin Xu1、†, Yangyang Wan, Xinyu Fan*, and Zuyuan He
Author Affiliations
  • Shanghai Jiao Tong University, State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai, China
  • show less
    DOI: 10.1117/1.AP.6.1.016006 Cite this Article Set citation alerts
    Bingxin Xu, Yangyang Wan, Xinyu Fan, Zuyuan He, "Whispering-gallery-mode barcode-based broadband sub-femtometer-resolution spectroscopy with an electro-optic frequency comb," Adv. Photon. 6, 016006 (2024) Copy Citation Text show less
    References

    [1] H. Cao, Y. Eliezer. Harnessing disorder for photonic device applications. Appl. Phys. Rev., 9, 011309(2022).

    [2] Y. Wan, X. Fan, Z. He. Review on speckle-based spectrum analyzer. Photonic Sens., 11, 187-202(2021).

    [3] B. Redding, H. Cao. Using a multimode fiber as a high-resolution, low-loss spectrometer. Opt. Lett., 37, 3384-3386(2012).

    [4] B. Redding, S. M. Popoff, H. Cao. All-fiber spectrometer based on speckle pattern reconstruction. Opt. Express, 21, 6584-6600(2013).

    [5] B. Redding et al. High-resolution and broadband all-fiber spectrometers. Optica, 1, 175-180(2014).

    [6] N. Coluccelli et al. The optical frequency comb fibre spectrometer. Nat. Commun., 7, 12995(2016).

    [7] G. D. Bruce et al. Overcoming the speckle correlation limit to achieve a fiber wavemeter with attometer resolution. Opt. Lett., 44, 1367-1370(2019).

    [8] R. K. Gupta et al. Deep learning enabled laser speckle wavemeter with a high dynamic range. Laser Photonics Rev., 14, 2000120(2020).

    [9] T. Wang et al. High-resolution wavemeter based on polarization modulation of fiber speckles. APL Photonics, 5, 126101(2020).

    [10] Z. Zhang et al. A novel wavemeter with 64 attometer spectral resolution based on Rayleigh speckle obtained from single-mode fiber. J. Lightwave Technol., 38, 4548-4554(2020).

    [11] Y. Wan et al. Wavemeter capable of simultaneously achieving ultra-high resolution and broad bandwidth by using Rayleigh speckle from single mode fiber. J. Lightwave Technol., 39, 2223-2229(2021).

    [12] N. K. Metzger et al. Harnessing speckle for a sub-femtometre resolved broadband wavemeter and laser stabilization. Nat. Commun., 8, 15610(2017).

    [13] B. Redding et al. Evanescently coupled multimode spiral spectrometer. Optica, 3, 956-962(2016).

    [14] D. Yi et al. Integrated multimode waveguide with photonic lantern for speckle spectroscopy. IEEE J. Quantum Electron., 57, 0600108(2020).

    [15] Z. Zhang et al. Compact high resolution speckle spectrometer by using linear coherent integrated network on silicon nitride platform at 776 nm. Laser Photonics Rev., 15, 2100039(2021).

    [16] Y. Kwak et al. A pearl spectrometer. Nano Lett., 21, 921-930(2020).

    [17] Q. Cen et al. Microtaper leaky-mode spectrometer with picometer resolution. eLight, 3, 9(2023).

    [18] N. H. Wan et al. High-resolution optical spectroscopy using multimode interference in a compact tapered fibre. Nat. Commun., 6, 7762(2015).

    [19] T. Udem, R. Holzwarth, T. W. Hänsch. Optical frequency metrology. Nature, 416, 233-237(2002).

    [20] S. A. Diddams. The evolving optical frequency comb. J. Opt. Soc. Am. B, 27, B51-B62(2010).

    [21] S. A. Diddams, L. Hollberg, V. Mbele. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature, 445, 627-630(2007).

    [22] C. Gohle et al. Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra. Phys. Rev. Lett., 99, 263902(2007).

    [23] J. Mandon, G. Guelachvili, N. Picqué. Fourier transform spectroscopy with a laser frequency comb. Nat. Photonics, 3, 99-102(2009).

    [24] N. B. Hébert et al. Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation. Opt. Express, 23, 27806-27818(2015).

    [25] I. Coddington, N. Newbury, W. Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016).

    [26] I. Coddington, W. C. Swann, N. R. Newbury. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett., 100, 013902(2008).

    [27] S. A. Meek et al. Doppler-free Fourier transform spectroscopy. Opt. Lett., 43, 162-165(2018).

    [28] T. J. Kippenberg et al. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [29] A. Hugi et al. Mid-infrared frequency comb based on a quantum cascade laser. Nature, 492, 229-233(2012).

    [30] A. Parriaux, K. Hammani, G. Millot. Electro-optic frequency combs. Adv. Opt. Photonics, 12, 223-287(2020).

    [31] B. Xu et al. Sub-femtometer-resolution absolute spectroscopy with sweeping electro-optic combs. Opto-Electron. Adv., 5, 210023(2022).

    [32] Y. Bao et al. A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-μs response time. Light Sci. Appl., 4, e300(2015). https://doi.org/10.1038/lsa.2015.73

    [33] D. A. Long et al. Multiplexed sub-Doppler spectroscopy with an optical frequency comb. Phys. Rev. A, 94, 061801(2016).

    [34] D. A. Long et al. Electromagnetically induced transparency in vacuum and buffer gas potassium cells probed via electro-optic frequency combs. Opt. Lett., 42, 4430-4433(2017).

    [35] G. Millot et al. Frequency-agile dual-comb spectroscopy. Nat. Photonics, 10, 27-30(2016).

    [36] S. Wang et al. Fast mhz spectral-resolution dual-comb spectroscopy with electro-optic modulators. Opt. Lett., 44, 65-68(2019).

    [37] B. Xu et al. Broadband and high-resolution electro-optic dual-comb interferometer with frequency agility. Opt. Express, 27, 9266-9275(2019).

    [38] A. J. Fleisher et al. Coherent cavity-enhanced dual-comb spectroscopy. Opt. Express, 24, 10424-10434(2016).

    [39] D. A. Long, B. J. Reschovsky. Electro-optic frequency combs generated via direct digital synthesis applied to sub-doppler spectroscopy. OSA Contin., 2, 3576-3583(2019).

    [40] B. Xu et al. Wideband and high-resolution spectroscopy based on an ultra-fine electro-optic frequency comb with seed lightwave selection via injection locking. Opt. Lett., 46, 1876-1879(2021).

    [41] J. Liao, L. Yang. Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements. Light Sci. Appl., 10, 32(2021).

    [42] A. Shitikov et al. Billion Q-factor in silicon WGM resonators. Optica, 5, 1525-1528(2018).

    [43] C. Wang et al. High-Q microresonators on 4h-silicon-carbide-on-insulator platform for nonlinear photonics. Light Sci. Appl., 10, 139(2021).

    [44] Q. Luo et al. Microdisk lasers on an erbium-doped lithium-niobite chip. Sci. China Phys. Mech. Astron., 64, 234263(2021).

    [45] D. Zhu et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242-352(2021).

    [46] M. Yu et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature, 612, 252-258(2022).

    [47] A. Parriaux, K. Hammani, G. Millot. Electro-optic dual-comb spectrometer in the thulium amplification band for gas sensing applications. Opt. Lett., 44, 4335-4338(2019).

    [48] B. Xu, T. W. Hänsch, N. Picqué. Near-ultraviolet dual-comb spectroscopy with photon-counting, SM1D–4(2022).

    [49] M. Yan et al. Mid-infrared dual-comb spectroscopy with electro-optic modulators. Light Sci. Appl., 6, e17076(2017).

    Bingxin Xu, Yangyang Wan, Xinyu Fan, Zuyuan He, "Whispering-gallery-mode barcode-based broadband sub-femtometer-resolution spectroscopy with an electro-optic frequency comb," Adv. Photon. 6, 016006 (2024)
    Download Citation