[1] H Kwon, D Sounas, A Cordaro et al. Nonlocal metasurfaces for optical signal processing. Phys Rev Lett, 121, 173004(2018).
[2] T J Davis, F Eftekhari, D E Gómez et al. Metasurfaces with asymmetric optical transfer functions for optical signal processing. Phys Rev Lett, 123, 013901(2019).
[3] D R Solli, B Jalali. Analog optical computing. Nat Photonics, 9, 704-706(2015).
[4] T F Zhu, Y J Lou, Y H Zhou et al. Generalized spatial differentiation from the spin hall effect of light and its application in image processing of edge detection. Phys Rev Appl, 11, 034043(2019).
[5] J P B Mueller, N A Rubin, R C Devlin et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett, 118, 113901(2017).
[6] W T Chen, A Y Zhu, F Capasso. Flat optics with dispersion-engineered metasurfaces. Nat Rev Mater, 5, 604-620(2020).
[7] Y J Huang, T X Xiao, Z W Xie et al. Single-layered phase-change metasurfaces achieving efficient wavefront manipulation and reversible chiral transmission. Opt Express, 30, 1337-1350(2022).
[8] Y J Huang, T X Xiao, Z W Xie et al. Multistate nonvolatile metamirrors with tunable optical chirality. ACS Appl Mater Interfaces, 13, 45890-45897(2021).
[9] Y J Huang, T X Xiao, Z W Xie et al. Single-layered reflective metasurface achieving simultaneous spin-selective perfect absorption and efficient wavefront manipulation. Adv Opt Mater, 9, 2001663(2021).
[10] Y X Zhang, M B Pu, J J Jin et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron Adv, 5, 220058(2022).
[11] J T Li, G C Wang, Z Yue et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization. Opto-Electron Adv, 5, 210062(2022).
[12] Y L Wang, Q B Fan, T Xu. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv, 4, 200008(2021).
[13] Z Yue, J T Li, J Li et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron Sci, 1, 210014(2022).
[14] X Lan, Q R Deng, W T Zhang et al. Efficient chiral absorber based on twisted catenary structure. Opto-Electron Eng, 49, 220157(2022).
[15] R Yang, Q Q Yu, Y W Pan et al. Directional-multiplexing holography by on-chip metasurface. Opto-Electron Eng, 49, 220177(2022).
[16] Y J Huang, T X Xiao, S Chen et al. All-optical controlled-NOT logic gate achieving directional asymmetric transmission based on metasurface doublet. Opto-Electron Adv, 6, 220073(2023).
[17] G X Zheng, H Mühlenbernd, M Kenney et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol, 10, 308-312(2015).
[18] X Li, L W Chen, Y Li et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv, 2, e1601102(2016).
[19] X Xie, K P Liu, M B Pu et al. All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation. Nanophotonics, 9, 3209-3215(2020).
[20] Z Y Tang, L Li, H C Zhang et al. Multifunctional Janus metasurfaces achieving arbitrary wavefront manipulation at dual frequency. Mater Des, 223, 111264(2022).
[21] K Xu, X E Wang, X H Fan et al. Meta-holography: from concept to realization. Opto-Electron Eng, 49, 220183(2022).
[22] R C Devlin, A Ambrosio, N A Rubin et al. Arbitrary spin-to–orbital angular momentum conversion of light. Science, 358, 896-901(2017).
[23] Q T Li, F L Dong, B Wang et al. Free-space optical beam tapping with an all-silica metasurface. ACS Photonics, 4, 2544-2549(2017).
[24] W T Chen, A Y Zhu, V Sanjeev et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol, 13, 220-226(2018).
[25] S M Wang, P C Wu, V C Su et al. A broadband achromatic metalens in the visible. Nat Nanotechnol, 13, 227-232(2018).
[26] W S Cai, U K Chettiar, A V Kildishev et al. Optical cloaking with metamaterials. Nat Photonics, 1, 224-227(2007).
[27] X Xie, X Li, M B Pu et al. Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv Funct Mater, 28, 1706673(2018).
[28] Y Zhou, W H Wu, R Chen et al. Analog optical spatial differentiators based on dielectric metasurfaces. Adv Opt Mater, 8, 1901523(2020).
[29] A Cordaro, H Kwon, D Sounas et al. High-index dielectric metasurfaces performing mathematical operations. Nano Lett, 19, 8418-8423(2019).
[30] Z W Dong, J N Si, X Y Yu et al. Optical spatial differentiator based on subwavelength high-contrast gratings. Appl Phys Lett, 112, 181102(2018).
[31] Y Zhou, H Y Zheng, I I Kravchenko et al. Flat optics for image differentiation. Nat Photonics, 14, 316-323(2020).
[32] L Wan, D P Pan, S F Yang et al. Optical analog computing of spatial differentiation and edge detection with dielectric metasurfaces. Opt Lett, 45, 2070-2073(2020).
[33] P C Huo, C Zhang, W Q Zhu et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett, 20, 2791-2798(2020).
[34] Q He, F Zhang, M B Pu et al. Monolithic metasurface spatial differentiator enabled by asymmetric photonic spin-orbit interactions. Nanophotonics, 10, 741-748(2021).
[35] A M Shaltout, V M Shalaev, M L Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).
[36] C M Chang, C H Chu, M L Tseng et al. Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films. Opt Express, 19, 9492-9504(2011).
[37] Y G Chen, T S Kao, B Ng et al. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. Opt Express, 21, 13691-13698(2013).
[38] N Yamada. Origin, secret, and application of the ideal phase-change material GeSbTe. Phys Status Solidi, 249, 1837-1842(2012).
[39] D Loke, T H Lee, W J Wang et al. Breaking the speed limits of phase-change memory. Science, 336, 1566-1569(2012).
[40] A K U Michel, P Zalden, D N Chigrin et al. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses. ACS Photonics, 1, 833-839(2014).
[41] Q Wang, E T F Rogers, B Gholipour et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat Photonics, 10, 60-65(2016).
[42] K K Du, Q Li, Y B Lyu et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light Sci Appl, 6, e16194(2017).
[43] Y F Zhang, J B Chou, J Y Li et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat Commun, 10, 4279(2019).
[44] A Arbabi, Y Horie, M Bagheri et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol, 10, 937-943(2015).
[45] K Y Bliokh, F J Rodríguez-Fortuño, F Nori et al. Spin–orbit interactions of light. Nat Photonics, 9, 796-808(2015).
[46] F Zhang, M B Pu, J Luo et al. Symmetry breaking of photonic spin‐orbit interactions in metasurfaces. Opto-Electron Eng, 44, 319-325(2017).
[47] H Yang, Z W Xie, H R He et al. Switchable imaging between edge-enhanced and bright-field based on a phase-change metasurface. Opt Lett, 46, 3741-3744(2021).
[48] J X Zhou, H L Qian, C F Chen et al. Optical edge detection based on high-efficiency dielectric metasurface. Proc Natl Acad Sci USA, 116, 11137-11140(2019).