• Journal of Inorganic Materials
  • Vol. 38, Issue 3, 228 (2023)
Chaoyi ZHANG1, Huili TANG1、*, Xianke LI1, Qingguo WANG1, Ping LUO1, Feng WU1, Chenbo ZHANG1, Yanyan XUE1, Jun XU1、*, Jianfeng HAN2, and Zhanwen LU2
Author Affiliations
  • 11. MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 22. Linton Kayex Technology Co., Ltd., Wuxi 214000, China
  • show less
    DOI: 10.15541/jim20220620 Cite this Article
    Chaoyi ZHANG, Huili TANG, Xianke LI, Qingguo WANG, Ping LUO, Feng WU, Chenbo ZHANG, Yanyan XUE, Jun XU, Jianfeng HAN, Zhanwen LU. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228 Copy Citation Text show less
    References

    [1] L ZHANG, J YU, X HAO et al. Influence of stress in GaN crystals grown by HVPE on MOCVD-GaN/6H-SiC substrate. Scientific Reports, 4:, 4179(2014).

    [3] W LEE, M PARK, W LEE et al. Characteristic comparison between GaN layer grown on c-plane cone shape patterned sapphire substrate and planar c-plane sapphire substrate by HVPE. Journal of Crystal Growth, 493:, 8(2018).

    [4] M LEE, W AHNC, O VUTK et al. First observation of electronic trap levels in freestanding GaN crystals extracted from Si substrates by hydride vapour phase epitaxy. Scientific Reports, 7128(2019).

    [5] K TAMURA, A OHTOMO, K SAIKUSA et al. Epitaxial growth of ZnO films on lattice-matched ScAlMgO4 (0001) substrates. Journal of Crystal Growth, 214-215:, 59(2000).

    [6] P RAMIREZ. Oxide electronics emerge. Science, 315:, 1377(2007).

    [7] T OBATA, R TAKAHASHI, I OHKUBO et al. Epitaxial ScAlMgO4 (0001) films grown on sapphire substrates by flux- mediated epitaxy. Applied Physics Letters, 191910(2006).

    [8] T KATASE, K NOMURA, H OHTA et al. Fabrication of ScAlMgO4 epitaxial thin films using ScGaO3(ZnO)m buffer layers and its application to lattice-matched buffer layer for ZnO epitaxial growth. Thin Solid Films, 5842(2008).

    [9] T YANAGIDA, M KOSHIMIZU, N KAWANO et al. Optical and scintillation properties of ScAlMgO4 crystal grown by the floating zone method. Materials Research Bulletin, 95:, 409(2017).

    [10] K NOBORU, M TAKAHIKO, N MASAKI. Compounds which have InFeO3(ZnO)m-type structures (m= integer). Journal of Solid State Chemistry, 81:, 70(1989).

    [11] R GRAJCZYK, M SUBRAMANIAN. Structure-property relationships of YbFe2O4- and Yb2Fe3O7-type layered oxides: a bird's eye view. Progress in Solid State Chemistry, 37(2015).

    [12] B AKEN, A MEETSMA, T PALSTRA. Structural view of hexagonal non-perovskite AMnO3(2001).

    [13] A VAN, A MEETSMA, T PALSTRA. Hexagonal YMnO3. Acta Crystallographica Section C, 230(2001).

    [14] H MIZOGUCHI, A SLEIGHT, M SUBRAMANIAN. New oxides showing an intense blue color based on Mn3+ in trigonal- bipyramidal coordination. Inorganic Chemistry, 10(2011).

    [15] T KATASE, K NOMURA, H OHTA et al. Large domain growth of GaN epitaxial films on lattice-matched buffer layer ScAlMgO4. Materials Science and Engineering: B, 66(2009).

    [16] O SCHMITZ, K HORST. Über eine neue klasse quarternärer oxide von typus MIIMIIIInO4. die lichtabsorption des 2-wertigen kupfers, nickels und kobalts sowie des 3-wertigen chroms. Journal of Inorganic and General Chemistry, 252(1965).

    [17] K KATO, I KAWADA, N KIMIZUKA et al. Die Kristallstruktur von YbFe2O4. Zeitschrift für Kristallographie-Crystalline Materials, 314(1975).

    [18] R GÉRARDIN, A ALEBOUYEH, F JEANNOT et al. Sur l'existence des oxydes rhomboe driques A(III)B(II)B(III)O4. Materials Research Bulletin, 647(1980).

    [19] K NOBORU, Y AKIJI, O HARUO et al. The stability of the phases in the Ln2O3-FeO-Fe2O3 systems which are stable at elevated temperatures (Ln: Lanthanide elements and Y). Journal of Solid State Chemistry, 65(1983).

    [20] M NESPOLO, A SATO, T OSAWA et al. Synthesis, crystal structure and charge distribution of InGaZnO4. X-ray diffraction study of 20 kB single crystal and 50 kB twin by reticular merohedry. Crystal Research and Technology, 151(2000).

    [21] A MURAT, J E MEDVEDEVA. Electronic properties of layered multicomponent wide-band-gap oxides: a combinatorial approach. Physical Review B, 155101(2012).

    [22] A WALSH, S DA, S WEI et al. Nature of the band gap of In2O3 revealed by first-principles calculations and X-ray spectroscopy. Physical Review Letters, 167402(2008).

    [23] A WALSH, F DA, S WEI. Origins of band-gap renormalization in degenerately doped semiconductors. Physical Review B, 075211(2008).

    [24] C KÖRBER, V KRISHNAKUMAR, A KLEIN et al. Electronic structure of In2O3 and Sn-doped In2O3 by hard X-ray photoemission spectroscopy. Physical Review B, 165207(2010).

    [25] A WALSH, S DA, S WEI. Multi-component transparent conducting oxides: progress in materials modelling. Journal of Physics-Condensed Matter, 334210(2011).

    [26] M HUDA, Y YAN, A WALSH et al. Group-IIIA versus IIIB delafossites: electronic structure study. Physical Review B, 035205(2009).

    [27] D SCANLON, A WALSH, B MORGAN et al. Effect of Cr substitution on the electronic structure of CuAl1-xCrxO2. Physical Review B, 035101(2009).

    [28] D SCANLON, A WALSH, G WATSON. Understanding the p-type conduction properties of the transparent conducting oxide CuBO2: a density functional theory analysis. Chemistry of Materials, 4568(2009).

    [29] A WALSH, S DA, S WEI. Interplay between order and disorder in the high performance of amorphous transparent conducting oxides. Chemistry of Materials, 5119(2009).

    [30] A WALSH, C CATLOW. Structure, stability and work functions of the low index surfaces of pure indium oxide and Sn-doped indium oxide (ITO) from density functional theory. Journal of Materials Chemistry, 10438(2010).

    [31] K TAMURA, T MAKINO, A TSUKAZAKI et al. Donor-acceptor pair luminescence in nitrogen-doped ZnO films grown on lattice- matched ScAlMgO4 (0001) substrates. Solid State Communications, 265(2003).

    [32] J MEDVEDEVA, C HETTIARACHCHI. Tuning the properties of complex transparent conducting oxides: role of crystal symmetry, chemical composition, and carrier generation. Physical Review B, 125116(2010).

    [33] K NOBORU, TAKAHIKOM. Spinel, YbFe2O4, and Yb2Fe3O7 types of structures for compounds in the In2O3 and Sc2O3-A2O3-BO systems [A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn] at temperatures over 1000 ℃. Journal of Solid State Chemistry, 382(1985).

    [34] D BYLANDER, L KLEINMAN. Good semiconductor band gaps with a modified local-density approximation. Physical Review B, 7868(1990).

    [35] E HELLMAN, C BRANDLE, L SCHNEEMEYER et al. ScAlMgO4: an oxide substrate for GaN epitaxy. MRS Internet Journal of Nitride Semiconductor Research, 1:, U3(1996).

    [36] H IWANAGA, A KUNISHIGE, S TAKEUCHI. Anisotropic thermal expansion in wurtzite-type crystals. Journal of Materials Science, 35:, 2451(2000).

    [37] R SIMURA, K SUGIYAMA, A NAKATSUKA et al. High-temperature thermal expansion of ScAlMgO4 for substrate application of GaN and ZnO epitaxial growth. Japanese Journal of Applied Physics, 099201(2016).

    [38] H TANG, J XU, Y DONG et al. Study on growth and characterization of ScAlMgO4 substrate crystal. Journal of Alloys and Compounds, L43(2009).

    [39] HAAS J DE, P DORENBOS. Advances in yield calibration of scintillators. IEEE Transactions on Nuclear Science, 1086(2008).

    [40] S ABRAHAMS, P MARSH, C BRANDLE. Laser and phosphor host La1-xMgAl11+xO19 (x=0.050): crystal structure at 295 K. The Journal of Chemical Physics, 4221(1986).

    [41] X CHAUD, S MESLIN, J NOUDEM et al. Isothermal growth of large YBaCuO single domains through an artificial array of holes. Journal of Crystal Growth, 855(2005).

    [42] B HANSKARL. Über Oxoscandate. II. Zur Kenntnis des MgSc2O4. Journal of Inorganic and General Chemistry, 113(1966).

    [43] R NANCY. High pressure study of ScAlO3 perovskite. Physics and Chemistry of Minerals, 25:, 597(1998).

    [44] M ZAWRAH, H HAMAAD, S MEKY. Synthesis and characterization of nano MgAl2O4 spinel by the co-precipitated method. Ceramics International, 969(2007).

    [45] H TANG, Y DONG, J XU et al. Study on the growth of lattice-matched ScAlMgO4 substrate for GaN and ZnO based film epitaxy. Journal of Synthetic Crystals, 612(2007).

    [46] K NOBORU, M TAKAHIKO, M YOSHIO et al. Homologous compounds, InFeO3(ZnO)m (m=1-9). Journal of Solid State Chemistry, 98(1988).

    [47] H TANG, Y DONG, J XU et al. Growth defects of ScAlMgO4 crystal. Journal of the Chinese Ceramic Society, 689(2008).

    [48] T FUKUDA, Y SHIRAISHI, T NANTO et al. Growth of bulk single crystal ScAlMgO4 boules and GaN films on ScAlMgO4 substrates for GaN-based optical devices, high-power and high- frequency transistors. Journal of Crystal Growth, 574:, 126286(2021).

    [49] K ISHIJI, T FUJII, T ARAKI et al. Observation of defect structure in ScAlMgO4 crystal using X-ray topography. Journal of Crystal Growth, 580:, 136477(2022).

    [50] Y YAO, K HIRANO, H YAMAGUCHI et al. A synchrotron X-ray topography study of crystallographic defects in ScAlMgO4 single crystals. Journal of Alloys and Compounds, 896:, 163025(2022).

    [51] K KARCH, M WAGNER, F BECHSTEDT. Ab initio study of structural, dielectric, and dynamical properties of GaN. Physical Review B, 7043(1998).

    [52] J ZOU, D KOTCHETKOV, A BALANDIN et al. Thermal conductivity of GaN films: effects of impurities and dislocations. Journal of Applied Physics, 2534(2002).

    [53] P STEPHEN, R FAN. GaN electronics. Advanced Materials, 1571(2000).

    [54] L LIU, J EDGAR. Substrates for gallium nitride epitaxy. Materials Science and Engineering R, 37:, 61(2002).

    [55] W WANG, W YANG, H WANG et al. Epitaxial growth of GaN films on unconventional oxide substrates. Journal of Materials Chemistry C, 9342(2014).

    [56] W WANG, T YAN, W YANG et al. Effect of growth temperature on the properties of GaN epitaxial films grown on magnesium aluminate scandium oxide substrates by pulsed laser deposition. Materials Letters, 183:, 382(2016).

    [57] D ERRANDONEA, R S KUMAR, J RUIZ-FUERTES et al. High-pressure study of substrate material ScAlMgO4. Physical Review B, 144104(2011).

    [58] K OHNISHI, S KUBOYA, T TANIKAWA et al. Reuse of ScAlMgO4 substrates utilized for halide vapor phase epitaxy of GaN. Japanese Journal of Applied Physics, SC1023(2019).

    [59] T FUKUI, T SAKAGUCHI, Y MATSUDA et al. Metalorganic vapor phase epitaxy of GaN on 2 inch ScAlMgO4 (0001) substrates. Japanese Journal of Applied Physics, 090904(2022).

    [60] A UETA, H OHNO, N YANAGITA et al. High quality nitride semiconductors grown on novel ScAlMgO4 substrates and their light emitting diodes. Japanese Journal of Applied Physics, SC1041(2019).

    [61] M WILLIAM, P JACQUES. GaN growth on sapphire. Journal of Crystal Growth, 178:, 168(1997).

    [62] S PAL, C JACOB. Silicon-a new substrate for GaN growth. Bulletin of Materials Science, 501(2004).

    [63] S A DING, S R BARMAN, K HORN et al. Valence band discontinuity at a cubic GaN/GaAs heterojunction measured by synchrotron-radiation photoemission spectroscopy. Applied Physics Letters, 2407(1997).

    [64] J FAUGIER, F LAZAR, C MARICHY et al. Influence of the lattice mismatch on the atomic ordering of ZnO grown by atomic layer deposition onto single crystal surfaces with variable mismatch (InP, GaAs, GaN, SiC). Condensed Matter, 3(2017).

    [65] A OHTOMO, K TAMURA, K SAIKUSA. Single crystalline ZnO films grown on lattice-matched ScAlMgO4(0001) substrates. Applied Physics Letters, 2635(1999).

    [66] J J HASSAN, M A MAHDI, A RAMIZY et al. Fabrication and characterization of ZnO nanorods/p-6H-SiC heterojunction LED by microwave-assisted chemical bath deposition. Superlattices and Microstructures, 53:, 31(2013).

    [67] J ZHU, B LIN, X SUN et al. Heteroepitaxy of ZnO film on Si(111) substrate using a 3C-SiC buffer layer. Thin Solid Films, 218(2005).

    [68] G DEHM, B INKSON, T WAGNER. Growth and microstructural stability of epitaxial Al films on (0001) α-Al2O3 substrates. Acta Materialia, 50:, 5021(2002).

    [69] M STOCKMEIER, S A SAKWE, P HENS et al. Thermal expansion coefficients of 6H silicon carbide. Materials Science Forum, 600-603:, 517(2008).

    [70] T MIDDELMANN, A WALKOV, G BARTL et al. Thermal expansion coefficient of single-crystal silicon from 7 K to 293 K. Physical Review B, 174113(2015).

    [71] T SOMA, J SATOH, H MATSUO. Thermal expansion coefficient of GaAs and InP. Solid State Communications, 889(1982).

    [72] V KURLOV. Sapphire:Properties, Growth, and Applications. Encyclopedia of Materials:Science and Technology, Elsevier Science Ltd., 8264(2001).

    [73] Z LIU, A MASUDA, M KONDO. Investigation on the crystal growth process of spherical Si single crystals by melting. Journal of Crystal Growth, 4116(2009).

    [74] K KAKIMOTO, T HIBIYA. Temperature dependence of viscosity of molten GaAs by an oscillating cup method. Applied Physics Letters, 1249(1987).

    [75] Q ZHENG, C LI, A RAI et al. Thermal conductivity of GaN, 71GaN, and SiC from 150 K to 850 K. Physical Review Materials, 014601(2019).

    [76] H SHIBATA, Y WASEDA, H OHTA et al. High thermal conductivity of gallium nitride (GaN) crystals grown by HVPE process. Materials Transactions, 2782(2007).

    [77] C GLASSBRENNER, G SLACK. Thermal conductivity of silicon and Germanium from 3 K to the melting point. Physical Review, A1058(1964).

    [78] R CARLSON, G SLACK, S SILVERMAN. Thermal conductivity of GaAs and GaAs1-xPx laser semiconductors. Journal of Applied Physics, 505(1965).

    [79] G LI, W WANG, W YANG et al. Epitaxial growth of group III- nitride films by pulsed laser deposition and their use in the development of LED devices. Surface Science Reports, 70:, 380(2015).

    [80] W WANG, W YANG, G LI. Quality-enhanced GaN epitaxial films grown on (La, Sr)(Al, Ta)O3 substrates by pulsed laser deposition. Materials Letters, 168:, 52(2016).

    [81] T IWABUCHI, S KUBOYA, T TANIKAWA et al. Ga-polar GaN film grown by MOVPE on cleaved ScAlMgO4(0001) substrate with millimeter-scale wide terraces. Physica Status Solidi A, 1600754(2017).

    [82] A FLORIDUZ, E MATIOLI. Direct high-temperature growth of single-crystalline GaN on ScAlMgO4 substrates by metalorganic chemical vapor deposition. Japanese Journal of Applied Physics, 048002(2022).

    [83] T KIM, N MATSUKI, J OHTA et al. Epitaxial growth of AlN on single-crystal Ni(111) substrates. Applied Physics Letters, 121916(2006).

    [84] H CAI, P LIANG, R HÜBNER et al. Composition and bandgap control of AlxGa1-xN films synthesized by plasma-assisted pulsed laser deposition. Journal of Materials Chemistry C, 5307(2015).

    [85] W WANG, T YAN, W YANG et al. Epitaxial growth of GaN films on lattice-matched ScAlMgO4 substrates. CrystEngComm, 4688(2016).

    [86] Y ZHENG, W WANG, X LI et al. Polarity-controlled GaN epitaxial films achieved via controlling the annealing process of ScAlMgO4 substrates and the corresponding thermodynamic mechanisms. The Journal of Physical Chemistry C, 16161(2018).

    [87] M BORYSIEWICZ. ZnO as a functional material: a review. Crystals, 505(2019).

    [88] Y KOZUKA, A TSUKAZAKI, M KAWASAKI. Challenges and opportunities of ZnO-related single crystalline heterostructures. Applied Physics Reviews, 011303(2014).

    [89] L HALLIBURTON, N GILES, N GARCES et al. Production of native donors in ZnO by annealing at high temperature in Zn vapor. Applied Physics Letters, 172108(2005).

    [90] K KIM, S NIKI, J OH et al. High electron concentration and mobility in Al-doped n-ZnO epilayer achieved via dopant activation using rapid-thermal annealing. Journal of Applied Physics, 066103(2005).

    [91] T MAKINO, Y SEGAWA, A TSUKAZAKI et al. Electron transport in ZnO thin films. Applied Physics Letters, 022101(2005).

    [92] D LOOK. Recent advances in ZnO materials and devices. Materials Science and Engineering, B80:, 383(2001).

    [93] D LOOK, B CLAFLIN. P-type doping and devices based on ZnO. Physica Status Solidi B, 624(2004).

    [94] D LOOK, B CLAFLIN, Y I ALIVOV et al. The future of ZnO light emitters. Physica Status Solidi A, 2203(2004).

    [95] J NEAL, N GILES, X YANG et al. Evaluation of melt-grown, ZnO single crystals for use as alpha-particle detectors. IEEE Transactions on Nuclear Science, 1397(2008).

    [96] A TSUKAZAKI, A OHTOMO, T ONUMA et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature Materials, 42(2004).

    [97] M C WEN, T YAN, L CHANG et al. Achieving high MgO content in wurtzite ZnO epilayer grown on ScAlMgO4 substrate. Journal of Crystal Growth, 477:, 174(2017).

    [98] L TRINKLER, I AULIKA, G KRIEKE et al. Characterization of wurtzite Zn1-xMgxO epilayers grown on ScAlMgO4 substrate by methods of optical spectroscopy. Journal of Alloys and Compounds, 912:, 165178(2022).

    [99] A TSUKAZAKI, H SAITO, K TAMURA et al. Systematic examination of carrier polarity in composition spread ZnO thin films codoped with Ga and N. Applied Physics Letters, 235(2002).

    [100] O MASASHI, K HIROMITSU, Y TOSHINOBU. Sol-Gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution. Thin Solid Films, 306:, 78(1997).

    [101] O YUTAKA, S HISAO, T TOSHIMASA et al. Microstructure of TiO2 and ZnO films fabricated by the Sol-Gel method. Journal of the American Ceramic Society, 79:, 825(1996).

    [102] B WESSLER, A STEINECKER, W MADER. Epitaxial growth of ZnO thin films on ScAlMgO4 (0001) by chemical solution deposition. Journal of Crystal Growth, 242:, 283(2002).

    [103] T KATASE, K NOMURA, H OHTA et al. Fabrication of atomically flat ScAlMgO4 epitaxial buffer layer and low- temperature growth of high-mobility ZnO films. Crystal Growth & Design, 1084(2010).

    Chaoyi ZHANG, Huili TANG, Xianke LI, Qingguo WANG, Ping LUO, Feng WU, Chenbo ZHANG, Yanyan XUE, Jun XU, Jianfeng HAN, Zhanwen LU. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228
    Download Citation