• Laser & Optoelectronics Progress
  • Vol. 61, Issue 7, 0706013 (2024)
Chaoyang Li1、3, Jianfeng Sun2、4、5、*, Zhiyong Lu3, Yu Zhou2, Longkun Zhang3, Yuxin Jiang3, Lingling Xu3, Hanrui Pan3, Honghui Jia3, Haoming Yuan3, Weibiao Chen2、3, and Hui He2
Author Affiliations
  • 1Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
  • 2Space Laser Engineering Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 4Shanghai Satellite Network Research Institute Company Limited, Shanghai 200120, China
  • 5Shanghai Key Laboratory of Satellite Network, Shanghai 200120, China
  • show less
    DOI: 10.3788/LOP240428 Cite this Article Set citation alerts
    Chaoyang Li, Jianfeng Sun, Zhiyong Lu, Yu Zhou, Longkun Zhang, Yuxin Jiang, Lingling Xu, Hanrui Pan, Honghui Jia, Haoming Yuan, Weibiao Chen, Hui He. Integrated Technology of Laser Spread Spectrum Communication and Ranging for Deep Space (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(7): 0706013 Copy Citation Text show less
    References

    [1] Ye P J, Zou L Y, Wang D Y et al. Development and prospect of Chinese deep space exploration[J]. Space International, 4-10(2018).

    [2] Cao H Q, Zhang Z F, Ma J N et al. A brief review of engineering aspects of ESA’s Jupiter icy-moon explorer(JUICE)mission[J]. Journal of Astronautics, 44, 966-976(2023).

    [3] Yu G B. Application and trend of model-based systems engineering methods for deep space exploration mission[J]. Journal of Deep Space Exploration, 8, 407-415(2021).

    [4] Hamm M, Hamilton V E, Goodrich C A. Evidence for the presence of thin and heterogenous dust deposits on Ryugu’ boulders from Hayabusa2 MARA and sample data[J]. Geophysical Research Letters, 50, GL104795(2023).

    [5] Yoshikawa K, Sawada H, Kikuchi S et al. Modeling and analysis of Hayabusa2 touchdown[J]. Astrodynamics, 4, 119-135(2020).

    [6] McElwain M W, Feinberg L D, Kimble R A et al. The James Webb Space Telescope mission status[J]. Proceedings of SPIE, 12180, 121800P(2022).

    [7] Li H T. Technical approach analysis and development prospects of optical communication technology in China Deep Space TT & C Network(Invited)[J]. Infrared and Laser Engineering, 49, 20201003(2020).

    [8] Liu Y, Wu X, Wu Y C et al. Paleoenvironmental evolution of the Tianwen-1 landing site[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 42, 429-441(2023).

    [9] Marshalek R G, Mecherle G S, Jordan P. System-level comparison of optical and rf technologies for space-to-space and space-to-ground communication links circa 2000[J]. Proceedings of SPIE, 2699, 134-146(1996).

    [10] Stevens M L, Parenti R R, Willis M M et al. The lunar laser communication demonstration time-of-flight measurement system: overview, on-orbit performance, and ranging analysis[J]. Proceedings of SPIE, 9739, 973908(2016).

    [11] Srinivasan M, Alerstam E, Wollman E et al. The deep space optical communications project ground laser receiver[J]. Proceedings of SPIE, 12413, 124130R(2023).

    [12] Srinivasan M, Velasco A, Wright M et al. The deep space optical communications project ground laser transmitter[J]. Proceedings of SPIE, 12413, 124130Q(2023).

    [13] Leonard J M, Parker J S, Anderson R L et al. Supporting crewed lunar exploration with liaison navigation[C], 7244(2013).

    [14] Re E, Di Cintio A, Busca G et al. Novel time synchronization techniques for deep space probes[C], 205-210(2009).

    [15] Seubert J, Ely T, Prestage J et al. The Deep Space Atomic Clock: ushering in a new paradigm for radio navigation and science[J]. Advances in the Astronautical Sciences, 148, 1851-1865(2013).

    [16] Seubert J, Ely T A, Stuart J. Results of the deep space atomic clock deep space navigation analog experiment[J]. Journal of Spacecraft and Rockets, 59, 1914-1925(2022).

    [17] Song S B, Xu L P, Zhang H et al. X-ray communication based simultaneous communication and ranging[J]. Chinese Physics B, 24, 094215(2015).

    [19] Fang J Y[M]. Introduction to space particle beam technology, 411-412(2020).

    [20] He H Y, Sun J F, Lu Z Y et al. Phase-shift laser range finder technique based on optical carrier phase modulation[J]. Applied Optics, 59, 5079-5085(2020).

    [21] Benedetto F, Giunta G. A fast time-delay estimator of PN signals[J]. IEEE Transactions on Communications, 59, 2057-2062(2011).

    [22] Céspedes I, Huang Y, Ophir J et al. Methods for estimation of subsample time delays of digitized echo signals[J]. Ultrasonic Imaging, 17, 142-171(1995).

    [23] Banzhaf S, Waldschmidt C. Phase-code-based modulation for coherent lidar[J]. IEEE Transactions on Vehicular Technology, 70, 9886-9897(2021).

    [24] Dong G L, Li H T, Hao W H et al. Development and future of China’s deep space TT & C system[J]. Journal of Deep Space Exploration, 5, 99-114(2018).

    [25] Kong J, Zhang Y, Chen M et al. The effect of wheel off-loading on the orbit of Tianwen-1[J/OL]. Journal of Deep Space Exploration, 1-7. https://doi.org/10.15982/j.issn.2096-9287.2024.20230010

    [26] Jiang H L, Tong S F, Zhang L Z et al[M]. The technologies and systems of space laser communication, 82-88(2010).

    [27] Sambridge C S, Spollard J T, Sutton A J et al. Detection statistics for coherent RMCW LiDAR[J]. Optics Express, 29, 25945-25959(2021).

    [28] Gatt P, Henderson S W. Laser radar detection statistics: a comparison of coherent and direct-detection receivers[J]. Proceedings of SPIE, 4377, 251-262(2001).

    Chaoyang Li, Jianfeng Sun, Zhiyong Lu, Yu Zhou, Longkun Zhang, Yuxin Jiang, Lingling Xu, Hanrui Pan, Honghui Jia, Haoming Yuan, Weibiao Chen, Hui He. Integrated Technology of Laser Spread Spectrum Communication and Ranging for Deep Space (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(7): 0706013
    Download Citation