• Journal of Inorganic Materials
  • Vol. 38, Issue 9, 991 (2023)
Yu CHEN1、2, Puan LIN1、2, Bing CAI2、*, and Wenhua ZHANG1、2、*
Author Affiliations
  • 11. Southwest Joint Research Institute, School of Materials and Energy, Yunnan University, Kunming 650500, China
  • 22. Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 610200, China
  • show less
    DOI: 10.15541/jim20230105 Cite this Article
    Yu CHEN, Puan LIN, Bing CAI, Wenhua ZHANG. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2023, 38(9): 991 Copy Citation Text show less
    References

    [1] . Best research cell efficiency chart. https://www.nrel.gov/pv/cellefficiency.html

    [2] W MENG, K ZHANG, A OSVET et al. Revealing the strain- associated physical mechanisms impacting the performance and stability of perovskite solar cells. Joule, 6, 458(2022).

    [3] R CHEN, W ZHANG, X GUAN et al. Rear electrode materials for perovskite solar cells. Adv. Funct. Mater., 32, 2200651(2022).

    [4] G NAZIR, S Y LEE, J H LEE et al. Stabilization of perovskite solar cells: recent developments and future perspectives. Adv. Mater., 34, e2204380(2022).

    [5] J BING, L G CARO, H P TALATHI et al. Perovskite solar cells for building integrated photovoltaics-glazing applications. Joule, 6, 1446(2022).

    [6] H H PARK. Efficient and stable perovskite solar cells based on inorganic hole transport materials. Nanomaterials, 12, 112(2022).

    [7] X ZHANG, H ZHANG, Y LI et al. Recent progress in hole-transporting layers of conventional organic solar cells with p-i-n structure. Adv. Funct. Mater., 32, 2205398(2022).

    [8] B CAI, Y XING, Z YANG et al. High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ. Sci., 6, 1480(2013).

    [9] T ZHANG, F WANG, H B KIM et al. Ion-modulated radical doping of Spiro-OMeTAD for more efficient and stable perovskite solar cells. Science, 377, 495(2022).

    [10] Y CHEN, Q WANG, W TANG et al. Heterocyclic amino acid molecule as a multifunctional interfacial bridge for improving the efficiency and stability of quadruple cation perovskite solar cells. Nano Energy, 108154(2023).

    [11] D GAO, B LI, Z LI et al. Highly efficient flexible perovskite solar cells through pentylammonium acetate modification with certified efficiency of 23.35%. Adv. Mater., 35, e2206387(2023).

    [12] Z LI, B LI, X WU et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science, 376, 416(2022).

    [13] W H NGUYEN, C D BAILIE, E L UNGER et al. Enhancing the hole-conductivity of Spiro-OMeTAD without oxygen or lithium salts by using Spiro(TFSI)2 in perovskite and dye-sensitized solar cells. J. Am. Chem. Soc., 136, 10996(2014).

    [14] H ZAI, Y MA, Q CHEN et al. Ion migration in halide perovskite solar cells: mechanism, characterization, impact and suppression. J. Energy Chem., 528(2021).

    [15] X LUO, X LIN, F GAO et al. Recent progress in perovskite solar cells: from device to commercialization. Sci. China Chem., 65, 2369(2022).

    [16] N ARORA, M I DAR, A HINDERHOFER et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 358, 768(2017).

    [17] J H LEE, I S JIN, Y W NOH et al. A solution-processed spinel CuCo2O4 as an effective hole transport layer for efficient perovskite solar cells with negligible hysteresis. ACS Sustain. Chem. Eng., 7, 17661(2019).

    [18] Q WANG, Z LIN, J SU et al. Recent progress of inorganic hole transport materials for efficient and stable perovskite solar cells. Nano Select, 2, 1055(2021).

    [19] J LIU, S K PATHAK, N SAKAI et al. Identification and mitigation of a critical interfacial instability in perovskite solar cells employing copper thiocyanate hole-transporter. Adv. Mater. Interf., 3, 1600571(2016).

    [20] W Y CHEN, J S JENG, K L HUANG et al. Modulation of Ni valence in p-type NiO films via substitution of Ni by Cu. J. Vac. Sci. Technol. A, 31, 021501(2013).

    [21] W CHEN, Y WU, Y YUE et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science, 350, 944(2015).

    [22] J EUVRARD, Y YAN, D B MITZI. Electrical doping in halide perovskites. Nat. Rev. Mater., 6, 531(2021).

    [23] J W JUNG, C C CHUEH, A K Y JEN. A low-temperature, solution- processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells. Adv. Mater., 27, 7874(2015).

    [24] C C BOYD, R C SHALLCROSS, T MOOT et al. Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. Joule, 4, 1759(2020).

    [25] Y CHEN, Z YANG, X JIA et al. Thermally stable methylammonium- free inverted perovskite solar cells with Zn2+ doped CuGaO2 as efficient mesoporous hole-transporting layer. Nano Energy, 148(2019).

    [26] B A NEJAND, V AHMADI, S GHARIBZADEH et al. Cuprous oxide as a potential low-cost hole-transport material for stable perovskite solar cells. ChemSusChem, 9, 302(2016).

    [27] W CHEN, F Z LIU, X Y FENG et al. Cesium doped NiOx as an efficient hole extraction layer for inverted planar perovskite solar cells. Adv. Energy Mater., 7, 1700722(2017).

    [28] Y CHEN, Y SHEN, W TANG et al. Ion compensation of buried interface enables highly efficient and stable inverted MA-free perovskite solar cells. Adv. Funct. Mater., 32, 2206703(2022).

    [29] Y CHEN, Z YANG, S WANG et al. Design of an inorganic mesoporous hole-transporting layer for highly efficient and stable inverted perovskite solar cells. Adv. Mater., 30, e1805660(2018).

    [30] S PARK, D W KIM, S Y PARK. Improved stability and efficiency of inverted perovskite solar cell by employing nickel oxide hole transporting material containing ammonium salt stabilizer. Adv. Funct. Mater., 32, 2200437(2022).

    [31] J Y JENG, K C CHEN, T Y CHIANG et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv. Mater., 26, 4107(2014).

    [32] Z ZHU, Y BAI, T ZHANG et al. High-performance hole-extraction layer of Sol-Gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angew. Chem. Int. Ed., 53, 12571(2014).

    [33] W CHEN, Y WU, J LIU et al. Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells. Energy Environ. Sci., 8, 629(2015).

    [34] W CHEN, Y ZHOU, L WANG et al. Molecule-doped nickel oxide: verified charge transfer and planar inverted mixed cation perovskite solar cell. Adv. Mater., 30, 1800515(2018).

    [35] M DU, S ZHAO, L DUAN et al. Surface redox engineering of vacuum-deposited NiOx for top-performance perovskite solar cells and modules. Joule, 6, 1931(2022).

    [36] Y ZHANG, C LI, E BI et al. Efficient inverted perovskite solar cells with a low-dimensional halide/perovskite heterostructure. Adv. Energy Mater., 12, 2202191(2022).

    [37] D OUYANG, J XIAO, F YE et al. Strategic synthesis of ultrasmall NiCo2O4 NPs as hole transport layer for highly efficient perovskite solar cells. Adv. Energy Mater., 8, 1702722(2018).

    [38] X JING, Z ZHANG, T CHEN et al. Review of inorganic hole transport materials for perovskite solar cells. Energy Technol., 11, 2201005(2023).

    [39] M BIDIKOUDI, E KYMAKIS. Novel approaches and scalability prospects of copper based hole transporting materials for planar perovskite solar cells. J. Mater. Chem. C, 7, 13680(2019).

    [40] C ZUO, L DING. Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells. Small, 11, 5528(2015).

    [41] W SUN, Y LI, S YE et al. High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer. Nanoscale, 8, 10806(2016).

    [42] D O SCANLON, A WALSH. Polymorph engineering of CuMO2 (M = Al, Ga, Sc, Y) semiconductors for solar energy applications: from delafossite to wurtzite. Acta Crystallogr. B, 71, 702(2015).

    [43] D XIONG, Z XU, X ZENG et al. Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells. J. Mater. Chem., 22, 24760(2012).

    [44] J ROBERTSON, P W PEACOCK, M D TOWLER et al. Electronic structure of p-type conducting transparent oxides. Thin Solid Films, 411, 96(2002).

    [45] H ZHANG, H WANG, W CHEN et al. CuGaO2: a promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells. Adv. Mater., 29, 1604984(2017).

    [46] H ZHANG, H WANG, H ZHU et al. Low-temperature solution- processed CuCrO2 hole-transporting layer for efficient and photostable perovskite solar cells. Adv. Energy Mater., 8, 1702762(2018).

    [47] A BASHIR, S SHUKLA, J H LEW et al. Spinel Co3O4 nanomaterials for efficient and stable large area carbon-based printed perovskite solar cells. Nanoscale, 10, 2341(2018).

    [48] Z L TSENG, L C CHEN, C H CHIANG et al. Efficient inverted-type perovskite solar cells using UV-ozone treated MoOx and WOx as hole transporting layers. Sol. Energy, 484(2016).

    [49] M CHENG, Y LI, M SAFDARI et al. Efficient perovskite solar cells based on a solution processable nickel(II) phthalocyanine and vanadium oxide integrated hole transport layer. Adv. Energy Mater., 7, 1602556(2017).

    [50] B GE, Z R ZHOU, X F WU et al. Self-organized Co3O4-SrCO3 percolative composites enabling nanosized hole transport pathways for perovskite solar cells. Adv. Funct. Mater., 31, 2106121(2021).

    [51] J A CHRISTIANS, R C M FUNG, P V KAMAT. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc., 136, 758(2014).

    [52] W SUN, S YE, H RAO et al. Room-temperature and solution- processed copper iodide as the hole transport layer for inverted planar perovskite solar cells. Nanoscale, 8, 15954(2016).

    [53] H RAO, W SUN, S YE et al. Solution-processed CuS NPs as an inorganic hole-selective contact material for inverted planar perovskite solar cells. ACS Appl. Mater. Inter., 8, 7800(2016).

    [54] N WIJEYASINGHE, T D ANTHOPOULOS. Copper(I) thiocyanate (CuSCN) as a hole-transport material for large-area opto/electronics. Semicond. Sci. Tech., 30, 104002(2015).

    [55] X ZHAO, T LIU, Q C BURLINGAME et al. Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science, 377, 307(2022).

    [56] W CHEN, Y WU, J FAN et al. Understanding the doping effect on NiO: toward high-performance inverted perovskite solar cells. Adv. Energy Mater., 8, 1703519(2018).

    [57] B YANG, D OUYANG, Z HUANG et al. Multifunctional synthesis approach of In:CuCrO2 nanoparticles for hole transport layer in high-performance perovskite solar cells. Adv. Funct. Mater., 29, 1902600(2019).

    [58] U N HUYNH, Y LIU, A CHANANA et al. Transient quantum beatings of trions in hybrid organic tri-iodine perovskite single crystal. Nat. Commun., 13, 1428(2022).

    [59] B GE, Z Q LIN, Z R ZHOU et al. Boric acid mediated formation and doping of NiOx layers for perovskite solar cells with efficiency over 21%. Sol. RRL, 5, 2000810(2021).

    [60] S WANG, Y LI, J YANG et al. Critical role of removing impurities in nickel oxide on high-efficiency and long-term stability of inverted perovskite solar cells. Angew. Chem. Int. Ed., 61, e202116534(2022).

    [61] J CHEN, N G PARK. Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett., 5, 2742(2020).

    [62] Z W GAO, Y WANG, W C H CHOY. Buried interface modification in perovskite solar cells: a materials perspective. Adv. Energy Mater., 12, 2104030(2022).

    [63] B ZHANG, J SU, X GUO et al. NiO/perovskite heterojunction contact engineering for highly efficient and stable perovskite solar cells. Adv. Sci., 7, 1903044(2020).

    [64] B CHEN, H CHEN, Y HOU et al. Passivation of the buried interface via preferential crystallization of 2D perovskite on metal oxide transport layers. Adv. Mater., 33, e2103394(2021).

    [65] Z LIU, Q LI, K CHEN et al. Tailoring carrier dynamics in inverted mesoporous perovskite solar cells with interface-engineered plasmonics. J. Mater. Chem. A, 9, 2394(2021).

    [66] T WU, L K ONO, R YOSHIOKA et al. Elimination of light- induced degradation at the nickel oxide-perovskite heterojunction by aprotic sulfonium layers towards long-term operationally stable inverted perovskite solar cells. Energy Environ. Sci., 15, 4612(2022).

    [67] C LI, X WANG, E BI et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science, 379, 690(2023).

    Yu CHEN, Puan LIN, Bing CAI, Wenhua ZHANG. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2023, 38(9): 991
    Download Citation