• Acta Optica Sinica
  • Vol. 43, Issue 15, 1506004 (2023)
Yi Cai1、*, Chenxu Jiang1, Xiaozhou Wang2, Fuhan Wang3, Zhongxing Tian1, Lin Sun1, Xiaoling Wang1, Ning Liu1, Gangxiang Shen1, Jun Zhou2, Xiangyong Hao3, and Shengqing Pang3
Author Affiliations
  • 1School of Electronic and Information Engineering, Soochow University, Suzhou 215006, Jiangsu, China
  • 2Hengxin Semitech Co., Ltd., Suzhou 215200, Jiangsu, China
  • 3Hengtong Group Co., Ltd., Suzhou 215200, Jiangsu, China
  • show less
    DOI: 10.3788/AOS230751 Cite this Article Set citation alerts
    Yi Cai, Chenxu Jiang, Xiaozhou Wang, Fuhan Wang, Zhongxing Tian, Lin Sun, Xiaoling Wang, Ning Liu, Gangxiang Shen, Jun Zhou, Xiangyong Hao, Shengqing Pang. Differential Self-Coherent Optical Fiber Transmission Systems for Short and Medium Reach Applications[J]. Acta Optica Sinica, 2023, 43(15): 1506004 Copy Citation Text show less
    References

    [1] Zhang J W, Yu J J, Chien H C. EML-based IM/DD 400G (4×112.5-Gbit/s) PAM-4 over 80 km SSMF based on linear pre-equalization and nonlinear LUT pre-distortion for inter-DCI applications[C](2017).

    [2] Pang X D, Ozolins O, Zhang L et al. Beyond 200 Gbps per lane intensity modulation direct detection (IM/DD) transmissions for optical interconnects: challenges and recent developments[C], W4I. 7(2019).

    [3] Pang X D, Ozolins O, Lin R et al. 200 Gbps/lane IM/DD technologies for short reach optical interconnects[J]. Journal of Lightwave Technology, 38, 492-503(2020).

    [4] Yang J Y, Li M Y, Ji Y et al. Research on the generation method and detector of IM/DD O-SEFDM system[J]. Acta Optica Sinica, 42, 1906005(2022).

    [5] Yu J J, Chi N, Chen L[M]. Coherent optical communication technology based on digital signal processing(2013).

    [6] Zhu Z Y, Zhao M X, Zhang Y C et al. MIMO equalization technology based on neural network in high-speed IM-DD mode division multiplexing transmission system[J]. Acta Optica Sinica, 41, 1406003(2021).

    [7] Karinou F, Stojanovic N, Prodaniuc C et al. Solutions for 100/400-Gb/s Ethernet systems based on multimode photonic technologies[J]. Journal of Lightwave Technology, 35, 3214-3222(2017).

    [8] Liu G N, Zhang L, Zuo T J et al. IM/DD transmission techniques for emerging 5G fronthaul, DCI and metro applications[J]. Journal of Lightwave Technology, 36, 560-567(2018).

    [9] Yi L L, Liao T, Huang L Y et al. Machine learning for 100 Gb/s/λ passive optical network[J]. Journal of Lightwave Technology, 37, 1621-1630(2019).

    [10] Dai X X, Li X, Luo M et al. LSTM networks enabled nonlinear equalization in 50-Gb/s PAM-4 transmission links[J]. Applied Optics, 58, 6079-6084(2019).

    [11] Szczerba K, Westbergh P, Agrell E et al. Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links[J]. Journal of Lightwave Technology, 31, 3525-3534(2013).

    [12] Elbers J P, Eiselt N, Dochhan A et al. PAM4 vs coherent for DCI applications[C], SpTh2D. 1(2017).

    [13] Chagnon M. Optical communications for short reach[J]. Journal of Lightwave Technology, 37, 1779-1797(2019).

    [14] Perin J K, Shastri A, Kahn J M. Data center links beyond 100 Gbit/s per wavelength[J]. Optical Fiber Technology, 44, 69-85(2018).

    [15] Kupfer T, Bisplinghof A, Duthel T et al. Optimizing power consumption of a coherent DSP for metro and data center interconnects[C], Th3G. 2(2017).

    [16] Nambath N, Raveendranath R K, Banerjee D et al. Analog domain signal processing-based low-power 100-Gb/s DP-QPSK receiver[J]. Journal of Lightwave Technology, 33, 3189-3197(2015).

    [17] Nambath N, Anghan M, Thaker N et al. First demonstration of an all analog adaptive equalizer for coherent DP-QPSK links[C], M3D.5(2017).

    [18] Perin J K, Shastri A, Kahn J M. Design of low-power DSP-free coherent receivers for data center links[J]. Journal of Lightwave Technology, 35, 4650-4662(2017).

    [19] Miyazaki T, Kubota F. PSK self-homodyne detection using a pilot carrier for multi-bit/symbol transmission with inverse-RZ signal[J]. IEEE Photonics Technology Letters, 17, 1334-1336(2005).

    [20] Puttnam B J, Sakaguchi J, Mendinueta J M D et al. Investigating self-homodyne coherent detection in a 19 channel space-division-multiplexed transmission link[J]. Optics Express, 21, 1561-1566(2013).

    [21] Puttnam B J, Luis R, Delgado-Mendinueta J M et al. High-capacity self-homodyne PDM-WDM-SDM transmission in a 19-core fiber[J]. Optics Express, 22, 21185-21191(2014).

    [22] Sowailem M Y S, El-Fiky E, Morsy-Osman M et al. Self-homodyne system for next generation intra-datacenter optical interconnects[J]. Optics Express, 25, 27834-27844(2017).

    [23] Feng Z H, Xu L A, Wu Q et al. Ultra-high capacity WDM-SDM optical access network with self-homodyne detection downstream and 32QAM-FBMC upstream[J]. Optics Express, 25, 5951-5961(2017).

    [24] Gui T, Wang X F, Tang M et al. Real-time demonstration of homodyne coherent bidirectional transmission for next-generation data center interconnects[J]. Journal of Lightwave Technology, 39, 1231-1238(2021).

    [25] Gui T, Cao J T, Chen X et al. Real-time single-carrier 800 Gb/s DP-64QAM demonstration using bi-directional self-homodyne coherent transceivers with 200 krad/s endless active polarization controller[C], T5A. 5(2021).

    [26] Swanson E A, Livas J C, Bondurant R S. High sensitivity optically preamplified direct detection DPSK receiver with active delay-line stabilization[J]. IEEE Photonics Technology Letters, 6, 263-265(1994).

    [27] Cho P S, Grigoryan V S, Godin Y A et al. Transmission of 25-Gb/s RZ-DQPSK signals with 25-GHz channel spacing over 1000 km of SMF-28 fiber[J]. IEEE Photonics Technology Letters, 15, 473-475(2003).

    [28] Gnauck A H, Winzer P J. Optical phase-shift-keyed transmission[J]. Journal of Lightwave Technology, 23, 115-130(2005).

    [29] Winzer P J, Raybon G, Song H Y et al. 100-Gb/s DQPSK transmission: from laboratory experiments to field trials[J]. Journal of Lightwave Technology, 26, 3388-3402(2008).

    [30] Nanou M, Politi C, Stavdas A et al. High-speed, high-performance DQPSK optical links with reduced complexity VDFE equalizers[J]. Photonics, 4, 13(2017).

    [31] Cheng J C, Xie C J, Tang M et al. A comparative study of intradyne and self-homodyne systems for next generation intra-datacenter optical interconnects[C](2019).

    [32] Ji H L, Li J C, Li X F et al. Beyond mrad/s polarization tracking speed of complementary polarization-diversity coherent receiver for remote LO[C], W1G.3(2022).

    [33] Ji H L, Li J C, Li X F et al. Complementary polarization-diversity self-coherent homodyne receiver with rapid polarization tracking for remote LO[C], Tu3B.3(2022).

    [34] Savory S, Hadjifotiou A. Laser linewidth requirements for optical DQPSK systems[J]. IEEE Photonics Technology Letters, 16, 930-932(2004).

    [35] Cai Y. Coherent detection in long-haul transmission systems[C](2008).

    [36] van den Borne D, Jansen S L, Gottwald E et al. DQPSK modulation for robust optical transmission[C](2008).

    [37] Nagarajan R, Rahn J, Kato M et al. 10 channel, 45.6 Gb/s per channel, polarization-multiplexed DQPSK, InP receiver photonic integrated circuit[J]. Journal of Lightwave Technology, 29, 386-395(2011).

    [38] Liu X, Chandrasekhar S. Direct detection of 107 Gb/s polarization-multiplexed DQPSK with electronic polarization demultiplexing[C](2008).

    Yi Cai, Chenxu Jiang, Xiaozhou Wang, Fuhan Wang, Zhongxing Tian, Lin Sun, Xiaoling Wang, Ning Liu, Gangxiang Shen, Jun Zhou, Xiangyong Hao, Shengqing Pang. Differential Self-Coherent Optical Fiber Transmission Systems for Short and Medium Reach Applications[J]. Acta Optica Sinica, 2023, 43(15): 1506004
    Download Citation