• Spectroscopy and Spectral Analysis
  • Vol. 33, Issue 11, 3002 (2013)
TAO Lin-li1、2、*, YANG Xiu-juan1、2, DENG Jun-ming1、2, and ZHANG Xi1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3964/j.issn.1000-0593(2013)11-3002-08 Cite this Article
    TAO Lin-li, YANG Xiu-juan, DENG Jun-ming, ZHANG Xi. Application of Near Infrared Reflectance Spectroscopy to Predict Meat Chemical Compositions: A Review[J]. Spectroscopy and Spectral Analysis, 2013, 33(11): 3002 Copy Citation Text show less

    Abstract

    In contrast to conventional methods for the determination of meat chemical composition, near infrared reflectance spectroscopy enables rapid, simple, secure and simultaneous assessment of numerous meat properties. The present review focuses on the use of near infrared reflectance spectroscopy to predict meat chemical compositions. The potential of near infrared reflectance spectroscopy to predict crude protein, intramuscular fat, fatty acid, moisture, ash, myoglobin and collagen of beef, pork, chicken and lamb is reviewed. This paper discusses existing questions and reasons in the current research. According to the published results, although published results vary considerably, they suggest that near-infrared reflectance spectroscopy shows a great potential to replace the expensive and time-consuming chemical analysis of meat composition. In particular, under commercial conditions where simultaneous measurements of different chemical components are required, near infrared reflectance spectroscopy is expected to be the method of choice. The majority of studies selected feature-related wavelengths using principal components regression, developed the calibration model using partial least squares and modified partial least squares, and estimated the prediction accuracy by means of cross-validation using the same sample set previously used for the calibration. Meat fatty acid composition predicted by near-infrared spectroscopy and non-destructive prediction and visualization of chemical composition in meat using near-infrared hyperspectral imaging and multivariate regression are the hot studying field now. On the other hand, near infrared reflectance spectroscopy shows great difference for predicting different attributes of meat quality which are closely related to the selection of calibration sample set, preprocessing of near-infrared spectroscopy and modeling approach. Sample preparation also has an important effect on the reliability of NIR prediction; in particular, lack of homogeneity of the meat samples influenced the accuracy of estimation of chemical components. In general the predicting results of intramuscular fat, fatty acid and moisture are best, the predicting results of crude protein and myoglobin are better, while the predicting results of ash and collagen are less accurate.
    TAO Lin-li, YANG Xiu-juan, DENG Jun-ming, ZHANG Xi. Application of Near Infrared Reflectance Spectroscopy to Predict Meat Chemical Compositions: A Review[J]. Spectroscopy and Spectral Analysis, 2013, 33(11): 3002
    Download Citation