• High Power Laser and Particle Beams
  • Vol. 32, Issue 1, 011013 (2020)
Xinxing Liu1、2, Zhen Tian3, and Yulong Tang1、2、*
Author Affiliations
  • 1Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Engineering, Liaocheng University, Liaocheng 252000, China
  • show less
    DOI: 10.11884/HPLPB202032.190458 Cite this Article
    Xinxing Liu, Zhen Tian, Yulong Tang. NbSe2 nanoparticles mode-locked 2 μm thulium fiber laser[J]. High Power Laser and Particle Beams, 2020, 32(1): 011013 Copy Citation Text show less
    References

    [1] Mingareev I, Weirauch F, Olowinsky A. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics and Laser Technology, 44, 2095-2099(2012).

    [2] Fried N M, Murray K E. High-power thulium fiber laser ablation of urinary tissues at 1.94 μm[J]. Journal of Endourology, 19, 25-31(2005).

    [3] Leindecker L, Marandi A, Byer R L. Octave-spanning ultrafast OPO with 2.6-6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser[J]. Optics Express, 20, 7046-7053(2012).

    [4] Gomes L A, Orsila L, Jouhti T. Picosecond SESAM-based ytterbium mode-locked fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 10, 129-136(2004).

    [5] Sobon G, Sotor J, Pasternak I. Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber[J]. Optics Express, 21, 127971-127976(2013).

    [6] Meng Yafei, Li Yao, Xu Yongbing. Carbon nanotube mode-locked thulium fiber laser with 200 nm tuning range[J]. Science Reports, 7, 45109(2017).

    [7] Luo Yongfeng, Zhou Yan, Tang Yulong. Mode-locked Tm-doped fiber laser based on iron-doped carbon nitride nanosheets[J]. Laser Physics Letters, 14, 110002(2017).

    [8] Sotor J, Sobon J, Kowalczyk M. Ultrafast thulium-doped fiber laser mode locked with black phosphorus[J]. Optics Letters, 40, 3885-3888(2015).

    [9] Luo Zhichao, Liu Meng, Liu Hao. 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber[J]. Optics Letters, 38, 5212-5215(2013).

    [10] Girish S G, Min G J, Shin K Y. Two-dimensional metallic niobium diselenide for sub-micrometer-thin antennas in wireless communication systems[J]. ACS Nano(2019).

    [11] Zhou Kaizhe, Zhao Min, Chang Mengjie. Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets[J]. Small, 11, 694-701(2014).

    [12] Komsa H P, Krasheninnikov A V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles[J]. Physical Review B, 88, 085318(2013).

    [13] Chen Bohua, Zhang Xiaoyan, Wu Kan. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2[J]. Optics Express, 23, 26723-26737(2015).

    [14] Cheng Chen, Liu Hongliang, Tan Yang. Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide[J]. Optics Express, 24, 10385-10390(2016).

    [15] Liu Xinxing, Zhang Shuaiyi, Yan Zhengyu. WSe2 as a saturable absorber for a passively Q-switched Ho, Pr: LLF laser at 2.95 μm[J]. Optical Materials Express, 8, 1213-1220(2018).

    [16] Huang Y H, Chen R S, Zhang J R. Electronic transport in NbSe2 two-dimensional nanostructures: Semiconducting characteristics and photoconductivity[J]. Nanoscale, 7, 18964(2015).

    [17] Guo Jiahao, Shi Yantao, Zhu Chao. Cost-effective and morphology-controllable niobium diselenides for highly efficient counter electrodes of dye-sensitized solar cells[J]. Journal of Materials Chemistry A, 1, 11874(2013).

    [18] Kumagai N, Tanno K. Kinetic and structural characteristics of 3R-niobium disulfide as a positive material for secondary lithium batteries[J]. Electrochimica Acta, 36, 935(1991).

    [19] Shi Yiyuan, Long Hui, Liu Shunxiang. Ultrasmall 2D NbSe2 based quantum dots used for low threshold ultrafast lasers[J]. Journal of Materials Chemistry C, 6, 12638-12642(2018).

    [20] Shi Yiyuan, Liu Wenjia, Lü Wei, et al. Passively Qswitched Erdoped fiber laser based on NbSe2 quantum dot saturable absber[C]Asia Communications Photonics Conference. 2018.

    [21] Chong A, Buckley J, Renninger W. All-normal-dispersion femtosecond fiber laser[J]. Optics Express, 14, 10095-10100(2006).

    [22] Tian Zhen, Wu kan, Kong Lingchen. Mode-locked thulium fiber laser with MoS2[J]. Laser Physics Letters, 12, 065104(2015).

    [23] Jackson S D. Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers[J]. Optics Communications, 230, 197-203(2004).

    [24] Tang Y L, Xu J Q, Chen W. 150-W Tm3+-doped fiber lasers with different cooling techniques and output couplings[J]. Chinese Physics Letters, 27, 104207(2010).

    [25] Tamura K, Ippen E P, Haus H A. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser[J]. Optics Letters, 18, 1080-1082(1993).

    [26] Zhang H, Lu S B, Zheng J. Molybdenum disulfide(MoS2) as a broadband saturable absorber for ultra-fast photonics[J]. Optics Express, 22, 7249-7260(2014).

    [27] Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersion dielectric fibers. I. Anomalous dispersion[J]. Applied Physics Letters, 23, 142-144(1973).

    [28] Huang Chongyuan, Wang Cong, Shang Wei. Developing high energy dissipative soliton fiber lasers at 2 micron[J]. Science Reports, 5, 13680(2015).

    Xinxing Liu, Zhen Tian, Yulong Tang. NbSe2 nanoparticles mode-locked 2 μm thulium fiber laser[J]. High Power Laser and Particle Beams, 2020, 32(1): 011013
    Download Citation