• Acta Optica Sinica
  • Vol. 43, Issue 8, 0822001 (2023)
Borui Leng1, Muku Chen1、2、3, and Tsai Dinping1、2、3、*
Author Affiliations
  • 1Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China
  • 2Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong 999077, China
  • 3State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong 999077, China
  • show less
    DOI: 10.3788/AOS221877 Cite this Article Set citation alerts
    Borui Leng, Muku Chen, Tsai Dinping. Design, Fabrication, and Imaging of Meta-Devices[J]. Acta Optica Sinica, 2023, 43(8): 0822001 Copy Citation Text show less
    References

    [1] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [2] Sun S L, Yang K Y, Wang C M et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 12, 6223-6229(2012).

    [3] Hsu W L, Wu P C, Chen J W et al. Vertical split-ring resonator based anomalous beam steering with high extinction ratio[J]. Scientific Reports, 5, 11226(2015).

    [4] Wang H C, Bao Z, Tsai H et al. Perovskite quantum dots and their application in light-emitting diodes[J]. Small, 14, 1702433(2018).

    [5] Huang Y W, Chen W T, Tsai W Y et al. Aluminum plasmonic multicolor meta-hologram[J]. Nano Letters, 15, 3122-3127(2015).

    [6] Chen W T, Yang K Y, Wang C M et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Letters, 14, 225-230(2014).

    [7] Wang H C, Chu C H, Wu P C et al. Ultrathin planar cavity metasurfaces[J]. Small, 14, 1703920(2018).

    [8] Qu G Y, Yang W H, Song Q H et al. Reprogrammable meta-hologram for optical encryption[J]. Nature Communications, 11, 5484(2020).

    [9] Wang D P, Hwang Y, Dai Y M et al. Broadband high-efficiency chiral splitters and holograms from dielectric nanoarc metasurfaces[J]. Small, 15, e1900483(2019).

    [10] Wu P C, Chen J W, Yin C W et al. Visible metasurfaces for on-chip polarimetry[J]. ACS Photonics, 5, 2568-2573(2017).

    [11] Wu P C, Zhu W M, Shen Z X et al. Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface[J]. Advanced Optical Materials, 5, 1600938(2017).

    [12] Chen W T, Török P, Foreman M R et al. Integrated plasmonic metasurfaces for spectropolarimetry[J]. Nanotechnology, 27, 224002(2016).

    [13] Wu P C, Tsai W Y, Chen M K et al. Versatile polarization generation with an aluminum plasmonic metasurface[J]. Nano Letters, 17, 445-452(2017).

    [14] Tsai W Y, Chung T L, Hsiao H H et al. Second harmonic light manipulation with vertical split ring resonators[J]. Advanced Materials, 31, e1806479(2019).

    [15] Shen K C, Huang Y T, Chung T L et al. Giant efficiency of visible second-harmonic light by an all-dielectric multiple-quantum-well metasurface[J]. Physical Review Applied, 12, 064056(2019).

    [16] Semmlinger M, Zhang M, Tseng M L et al. Generating third harmonic vacuum ultraviolet light with a TiO2 metasurface[J]. Nano Letters, 19, 8972-8978(2019).

    [17] Semmlinger M, Tseng M L, Yang J et al. Vacuum ultraviolet light-generating metasurface[J]. Nano Letters, 18, 5738-5743(2018).

    [18] Lehr D, Reinhold J, Thiele I et al. Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate[J]. Nano Letters, 15, 1025-1030(2015).

    [19] Zhou W, Dridi M, Suh J Y et al. Lasing action in strongly coupled plasmonic nanocavity arrays[J]. Nature Nanotechnology, 8, 506-511(2013).

    [20] Shen K C, Ku C T, Hsieh C et al. Deep-ultraviolet hyperbolic metacavity laser[J]. Advanced Materials, 30, 1706918(2017).

    [21] Sun W Z, Liu Y L, Qu G Y et al. Lead halide perovskite vortex microlasers[J]. Nature Communications, 11, 4862(2020).

    [22] Huang C, Zhang C, Xiao S M et al. Ultrafast control of vortex microlasers[J]. Science, 367, 1018-1021(2020).

    [23] Lin R J, Su V C, Wang S M et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 14, 227-231(2019).

    [24] Chen C, Song W G, Chen J W et al. Spectral tomographic imaging with aplanatic metalens[J]. Light: Science & Applications, 8, 99(2019).

    [25] Li M M, Li S S, Chin L K et al. Dual-layer achromatic metalens design with an effective Abbe number[J]. Optics Express, 28, 26041-26055(2020).

    [26] Wang S M, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).

    [27] Chen M K, Chu C H, Lin R J et al. Optical meta-devices: advances and applications[J]. Japanese Journal of Applied Physics, 58, SK0801(2019).

    [28] Lin H, Xu Z Q, Cao G Y et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses[J]. Light: Science & Applications, 9, 137(2020).

    [29] Hsiao H H, Chen Y H, Lin R J et al. Integrated-resonant resonant unit of metasurfaces for broadband efficiency and phase manipulation[J]. Advanced Optical Materials, 6, 1800031(2018).

    [30] Wang S M, Wu P C, Su V C et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 8, 187(2017).

    [31] Chen W T, Zhu A Y, Sanjeev V et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 13, 220-226(2018).

    [32] Balli F, Sultan M A, Ozdemir A et al. An ultrabroadband 3D achromatic metalens[J]. Nanophotonics, 10, 1259-1264(2021).

    [33] Yang W H, Xiao S M, Song Q H et al. All-dielectric metasurface for high-performance structural color[J]. Nature Communications, 11, 1864(2020).

    [34] Huang Y W, Lee H W H, Sokhoyan R et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Letters, 16, 5319-5325(2016).

    [35] Chu C H, Tseng M L, Chen J et al. Active dielectric metasurface based on phase-change medium[J]. Laser & Photonics Review, 10, 986-994(2016).

    [36] Wang Y F, Landreman P, Schoen D et al. Electrical tuning of phase-change antennas and metasurfaces[J]. Nature Nanotechnology, 16, 667-672(2021).

    [37] Akselrod G M, Huang J N, Hoang T B et al. Large-area metasurface perfect absorbers from visible to near-infrared[J]. Advanced Materials, 27, 8028-8034(2015).

    [38] Hua X, Wang Y J, Wang S M et al. Ultra-compact snapshot spectral light-field imaging[J]. Nature Communications, 13, 2732(2022).

    [39] Chen M K, Liu X, Wu Y et al. A meta-device for intelligent depth perception[J]. Advanced Materials, e2107465(2022).

    [40] Chen M K, Chu C H, Liu X Y et al. Meta-lens in the sky[J]. IEEE Access, 10, 46552-46557(2022).

    [41] Chen M K, Liu X Y, Sun Y N et al. Artificial intelligence in meta-optics[J]. Chemical Reviews, 122, 15356-15413(2022).

    [42] Fan Y L, Chen M K, Qiu M et al. Experimental demonstration of genetic algorithm based metalens design for generating side-lobe-suppressed, large depth-of-focus light sheet[J]. Laser & Photonics Reviews, 16, 2100425(2022).

    [43] Shi Y Z, Li Z Y, Liu P Y et al. On-chip optical detection of viruses: a review[J]. Advanced Photonics Research, 2, 2000150(2021).

    [44] Yesilkoy F, Arvelo E R, Jahani Y et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nature Photonics, 13, 390-396(2019).

    [45] Im H, Lee S H, Wittenberg N J et al. Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing[J]. ACS Nano, 5, 6244-6253(2011).

    [46] Xu B B, Li H M, Gao S L et al. Metalens-integrated compact imaging devices for wide-field microscopy[J]. Advanced Photonics, 2, 066004(2020).

    [47] Li L, Liu Z X, Ren X F et al. Metalens-array-based high-dimensional and multiphoton quantum source[J]. Science, 368, 1487-1490(2020).

    [48] Chen B H, Wu P C, Su V C et al. GaN metalens for pixel-level full-color routing at visible light[J]. Nano Letters, 17, 6345-6352(2017).

    [49] Zhang Z J, Luo J, Song M W et al. Large-area, broadband and high-efficiency near-infrared linear polarization manipulating metasurface fabricated by orthogonal interference lithography[J]. Applied Physics Letters, 107, 241904(2015).

    [50] Kim H, Park J, Cho S W et al. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens[J]. Nano Letters, 10, 529-536(2010).

    [51] Chen W X, Tymchenko M, Gopalan P et al. Large-area nanoimprinted colloidal Au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic metasurfaces[J]. Nano Letters, 15, 5254-5260(2015).

    [52] Verre R, Svedendahl M, Länk N O et al. Directional light extinction and emission in a metasurface of tilted plasmonic nanopillars[J]. Nano Letters, 16, 98-104(2016).

    [53] Lu C, Lipson R H. Interference lithography: a powerful tool for fabricating periodic structures[J]. Laser & Photonics Reviews, 4, 568-580(2010).

    [54] Huang H J, Yu C P, Chang H C et al. Plasmonic optical properties of a single gold nano-rod[J]. Optics Express, 15, 7132-7139(2007).

    [55] Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 16, 2818-2823(2016).

    [56] Chun N E, Chang L C, Ye J H et al. Proximity effect correction in electron-beam lithography based on computation of critical-development time with swarm intelligence[J]. Journal of Vacuum Science & Technology B, 35, 051603(2017).

    [57] Chang L C, Chun N E, Ye J H et al. A comprehensive model for sub-10 nm electron-beam patterning through the short-time and cold development[J]. Nanotechnology, 28, 425301(2017).

    [58] Su V C, Chen P H, Lin R M et al. Suppressed quantum-confined Stark effect in InGaN-based LEDs with nano-sized patterned sapphire substrates[J]. Optics Express, 21, 30065-30073(2013).

    [59] Ma X L, Pu M B, Li X et al. A planar chiral meta-surface for optical vortex generation and focusing[J]. Scientific Reports, 5, 10365(2015).

    [60] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 4, 2807(2013).

    [61] Guo Y H, Yan L S, Pan W et al. Scattering engineering in continuously shaped metasurface: an approach for electromagnetic illusion[J]. Scientific Reports, 6, 30154(2016).

    [62] Zheng J, Ye Z C, Sun N L et al. Highly anisotropic metasurface: a polarized beam splitter and hologram[J]. Scientific Reports, 4, 6491(2014).

    [63] Jakšić Z, Vasiljevic-Radovic D, Maksimovic M et al. Nanofabrication of negative refractive index metasurfaces[J]. Microelectronic Engineering, 83, 1786-1791(2006).

    [64] Luo J, Zeng B, Wang C T et al. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography[J]. Nanoscale, 7, 18805-18812(2015).

    [65] Liu L Q, Zhang X H, Zhao Z Y et al. Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography[J]. Advanced Optical Materials, 5, 1700429(2017).

    [66] Makarov S V, Milichko V, Ushakova E V et al. Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces[J]. ACS Photonics, 4, 728-735(2017).

    [67] Yao Y H, Wu W. All-dielectric heterogeneous metasurface as an efficient ultra-broadband reflector[J]. Advanced Optical Materials, 5, 1700090(2017).

    [68] Yao Y H, Liu H, Wang Y F et al. Nanoimprint-defined, large-area meta-surfaces for unidirectional optical transmission with superior extinction in the visible-to-infrared range[J]. Optics Express, 24, 15362-15372(2016).

    [69] Miyazaki H T, Kasaya T, Oosato H et al. Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO2 sensing[J]. Science and Technology of Advanced Materials, 16, 035005(2015).

    [70] Zhang G Q, Lan C W, Bian H L et al. Flexible, all-dielectric metasurface fabricated via nanosphere lithography and its applications in sensing[J]. Optics Express, 25, 22038-22045(2017).

    [71] Bonod N. Large-scale dielectric metasurfaces[J]. Nature Materials, 14, 664-665(2015).

    [72] Nemiroski A, Gonidec M, Fox J M et al. Engineering shadows to fabricate optical metasurfaces[J]. ACS Nano, 8, 11061-11070(2014).

    [73] Wu Z L, Chen K, Menz R et al. Tunable multiband metasurfaces by Moiré nanosphere lithography[J]. Nanoscale, 7, 20391-20396(2015).

    [74] Gonidec M, Hamedi M M, Nemiroski A et al. Fabrication of nonperiodic metasurfaces by microlens projection lithography[J]. Nano Letters, 16, 4125-4132(2016).

    [75] Park J S, Zhang S Y, She A L et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography[J]. Nano Letters, 19, 8673-8682(2019).

    [76] Yu N F, Aieta F, Genevet P et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 12, 6328-6333(2012).

    [77] Zhao Y, Alù A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates[J]. Nano Letters, 13, 1086-1091(2013).

    [78] Ding F, Wang Z X, He S L et al. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach[J]. ACS Nano, 9, 4111-4119(2015).

    [79] Grady N K, Heyes J E, Chowdhury D R et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 340, 1304-1307(2013).

    [80] Shaltout A, Liu J J, Kildishev A et al. Photonic spin Hall effect in gap-plasmon metasurfaces for on-chip chiroptical spectroscopy[J]. Optica, 2, 860-863(2015).

    [81] Hu Y Q, Wang X D, Luo X H et al. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications[J]. Nanophotonics, 9, 3755-3780(2020).

    [82] Khorasaninejad M, Chen W T, Zhu A Y et al. Multispectral chiral imaging with a metalens[J]. Nano Letters, 16, 4595-4600(2016).

    [83] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).

    [84] Balthasar Mueller J P, Rubin N A, Devlin R C et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 118, 113901(2017).

    [85] Devlin R C, Ambrosio A, Rubin N A et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 358, 896-901(2017).

    [86] Fan Q B, Zhu W Q, Liang Y Z et al. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible[J]. Nano Letters, 19, 1158-1165(2019).

    [87] Arbabi E, Kamali S M, Arbabi A et al. Full-stokes imaging polarimetry using dielectric metasurfaces[J]. ACS Photonics, 5, 3132-3140(2018).

    [88] Yang Z Y, Wang Z K, Wang Y X et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling[J]. Nature Communications, 9, 4607(2018).

    [89] Yan C, Li X, Pu M B et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces[J]. Applied Physics Letters, 114, 161904(2019).

    [90] Rubin N A, D'Aversa G, Chevalier P et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J]. Science, 365, eaax1839(2019).

    [91] Guo Q, Shi Z J, Huang Y W et al. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 22959-22965(2019).

    [92] Watanabe M, Nayar S K. Rational filters for passive depth from defocus[J]. International Journal of Computer Vision, 27, 203-225(1998).

    [93] Fan Z B, Qiu H Y, Zhang H L et al. A broadband achromatic metalens array for integral imaging in the visible[J]. Light: Science & Applications, 8, 67(2019).

    [94] Chen M K, Yan Y, Liu X Y et al. Edge detection with meta-lens: from one dimension to three dimensions[J]. Nanophotonics, 10, 3709-3715(2021).

    [95] Pahlevaninezhad H, Khorasaninejad M, Huang Y W et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo[J]. Nature Photonics, 12, 540-547(2018).

    [96] Luo Y, Tseng M L, Vyas S et al. Meta-lens light-sheet fluorescence microscopy for in vivo imaging[J]. Nanophotonics, 11, 1949-1959(2022).

    [97] Luo Y, Tseng M L, Vyas S et al. Metasurface-based abrupt autofocusing beam for biomedical applications[J]. Small Methods, 6, e2101228(2022).

    [98] Luo Y, Chu C H, Vyas S et al. Varifocal metalens for optical sectioning fluorescence microscopy[J]. Nano Letters, 21, 5133-5142(2021).

    [99] She A L, Zhang S Y, Shian S et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 4, eaap9957(2018).

    [100] Shalaginov M Y, An S S, Yang F et al. Single-element diffraction-limited fisheye metalens[J]. Nano Letters, 20, 7429-7437(2020).

    [101] Groever B, Chen W T, Capasso F. Meta-lens doublet in the visible region[J]. Nano Letters, 17, 4902-4907(2017).

    [102] Tseng M L, Semmlinger M, Zhang M et al. Vacuum ultraviolet nonlinear metalens[J]. Science Advances, 8, eabn5644(2022).

    [103] Ye W M, Zeuner F, Li X et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nature Communications, 7, 11930(2016).

    [104] Gao Y S, Fan Y B, Wang Y J et al. Nonlinear holographic all-dielectric metasurfaces[J]. Nano Letters, 18, 8054-8061(2018).

    [105] Wang Y J, Chen Q M, Yang W H et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window[J]. Nature Communications, 12, 5560(2021).

    [106] Koshelev K, Kruk S, Melik-Gaykazyan E et al. Subwavelength dielectric resonators for nonlinear nanophotonics[J]. Science, 367, 288-292(2020).

    [107] Koshelev K, Lepeshov S, Liu M K et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 121, 193903(2018).

    [108] Campione S, Liu S, Basilio L I et al. Broken symmetry dielectric resonators for high quality factor fano metasurfaces[J]. ACS Photonics, 3, 2362-2367(2016).

    [109] Wang J, Kühne J, Karamanos T et al. All-dielectric crescent metasurface sensor driven by bound states in the continuum[J]. Advanced Functional Materials, 31, 2104652(2021).

    [110] Wang X W, Nie Z Q, Liang Y et al. Recent advances on optical vortex generation[J]. Nanophotonics, 7, 1533-1556(2018).

    [111] Tan H Y, Deng J H, Zhao R Z et al. A free-space orbital angular momentum multiplexing communication system based on a metasurface[J]. Laser & Photonics Reviews, 13, 1800278(2019).

    [112] Stav T, Faerman A, Maguid E et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials[J]. Science, 361, 1101-1104(2018).

    [113] Wang K, Titchener J G, Kruk S S et al. Quantum metasurface for multiphoton interference and state reconstruction[J]. Science, 361, 1104-1108(2018).

    [114] Fan Y B, Liang H, Li J S et al. Emerging trend in unconventional metasurfaces: from nonlinear, non-Hermitian to nonclassical metasurfaces[J]. ACS Photonics, 9, 2872-2890(2022).

    [115] Zhu L X, Liu X, Sain B et al. A dielectric metasurface optical chip for the generation of cold atoms[J]. Science Advances, 6, eabb6667(2020).

    Borui Leng, Muku Chen, Tsai Dinping. Design, Fabrication, and Imaging of Meta-Devices[J]. Acta Optica Sinica, 2023, 43(8): 0822001
    Download Citation