• Photonics Research
  • Vol. 12, Issue 6, 1107 (2024)
Liang Xu1、2, Kun Wang1、2, Chen Liu1、2, Wenying Chen1、2, Chi Zhang1、2、*, and Xinliang Zhang1、2
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Optics Valley Laboratory, Wuhan 430074, China
  • show less
    DOI: 10.1364/PRJ.515112 Cite this Article Set citation alerts
    Liang Xu, Kun Wang, Chen Liu, Wenying Chen, Chi Zhang, Xinliang Zhang. Transient long-range distance measurement by a Vernier spectral interferometry[J]. Photonics Research, 2024, 12(6): 1107 Copy Citation Text show less
    References

    [1] D. Massonnet, M. Rossi, C. Carmona. The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364, 138-142(1993).

    [2] M. Fridlund. Future space missions to search for terrestrial planets. Space Sci. Rev., 135, 355-369(2008).

    [3] Y. Gong, J. Luo, B. Wang. Concepts and status of Chinese space gravitational wave detection projects. Nat. Astron., 5, 881-889(2021).

    [4] C. P. Hsu, B. Li, B. Solano-Rivas. A review and perspective on optical phased array for automotive LiDAR. IEEE J. Sel. Top. Quantum Electron., 27, 8300416(2021).

    [5] S. Nagano, T. Yoshino, H. Kunimori. Displacement measuring technique for satellite-to-satellite laser interferometer to determine earth’s gravity field. Meas. Sci. Technol., 15, 2406(2004).

    [6] R. Pierce, J. Leitch, M. Stephens. Intersatellite range monitoring using optical interferometry. Appl. Opt., 47, 5007-5019(2008).

    [7] G. Wu, M. Takahashi, H. Inaba. Pulse-to-pulse alignment technique based on synthetic-wavelength interferometry of optical frequency combs for distance measurement. Opt. Lett., 38, 2140-2143(2013).

    [8] Y.-S. Jang, K. Lee, S. Han. Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser. Opt. Eng., 53, 122403(2014).

    [9] Z. Zhu, G. Xu, K. Ni. Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement. Opt. Express, 26, 5747-5757(2018).

    [10] L. Yan, J. Xie, B. Chen. Absolute distance measurement using laser interferometric wavelength leverage with a dynamic-sideband-locked synthetic wavelength generation. Opt. Express, 29, 8344-8357(2021).

    [11] N. Schuhler, Y. Salvadé, S. Lévêque. Frequency-comb-referenced two-wavelength source for absolute distance measurement. Opt. Lett., 31, 3101-3103(2006).

    [12] G. Wang, Y.-S. Jang, S. Hyun. Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser. Opt. Express, 23, 9121-9129(2015).

    [13] Y.-S. Jang, G. Wang, S. Hyun. Comb-referenced laser distance interferometer for industrial nanotechnology. Sci. Rep., 6, 31770(2016).

    [14] R. Dändliker, R. Thalmann, D. Prongué. Two-wavelength laser interferometry using superheterodyne detection. Opt. Lett., 13, 339-341(1988).

    [15] C. C. Williams, H. K. Wickramasinghe. Absolute optical ranging with 200-nm resolution. Opt. Lett., 14, 542-544(1989).

    [16] R. W. Fox, B. R. Washburn, N. R. Newbury. Wavelength references for interferometry in air. Appl. Opt., 44, 7793-7801(2005).

    [17] K. Minoshima, H. Matsumoto. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt., 39, 5512-5517(2000).

    [18] K. Määttä, J. Kostamovaara, R. Myllylä. Profiling of hot surfaces by pulsed time-of-flight laser range finder techniques. Appl. Opt., 32, 5334-5347(1993).

    [19] F. Dill. Gallium arsenide injection laser. IEEE International Solid-State Circuits Conference, 110-111(1963).

    [20] T. Udem, R. Holzwarth, T. W. Hänsch. Optical frequency metrology. Nature, 416, 233-237(2002).

    [21] S.-W. Kim. Combs rule. Nat. Photonics, 3, 313-314(2009).

    [22] S. A. Diddams. The evolving optical frequency comb [invited]. J. Opt. Soc. Am. B, 27, B51-B62(2010).

    [23] T. Fortier, E. Baumann. 20 years of developments in optical frequency comb technology and applications. Commun. Phys., 2, 153(2019).

    [24] N. R. Newbury. Searching for applications with a fine-tooth comb. Nat. Photonics, 5, 186-188(2011).

    [25] T. Udem, J. Reichert, R. Holzwarth. Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser. Phys. Rev. Lett., 82, 3568-3571(1999).

    [26] D. J. Jones, S. A. Diddams, J. K. Ranka. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 288, 635-639(2000).

    [27] S. A. van den Berg, S. van Eldik, N. Bhattacharya. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement. Sci. Rep., 5, 14661(2015).

    [28] K.-N. Joo, S.-W. Kim. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser. Opt. Express, 14, 5954-5960(2006).

    [29] M. Cui, M. G. Zeitouny, N. Bhattacharya. Long distance measurement with femtosecond pulses using a dispersive interferometer. Opt. Express, 19, 6549-6562(2011).

    [30] J. Wang, Z. Lu, W. Wang. Long-distance ranging with high precision using a soliton microcomb. Photon. Res., 8, 1964-1972(2020).

    [31] S. A. van den Berg, S. T. Persijn, G. J. P. Kok. Many-wavelength interferometry with thousands of lasers for absolute distance measurement. Phys. Rev. Lett., 108, 183901(2012).

    [32] J. Lee, Y.-J. Kim, K. Lee. Time-of-flight measurement with femtosecond light pulses. Nat. Photonics, 4, 716-720(2010).

    [33] D. Wei, S. Takahashi, K. Takamasu. Time-of-flight method using multiple pulse train interference as a time recorder. Opt. Express, 19, 4881-4889(2011).

    [34] J. Ye. Absolute measurement of a long, arbitrary distance to less than an optical fringe. Opt. Lett., 29, 1153-1155(2004).

    [35] Y.-S. Jang, S.-W. Kim. Distance measurements using mode-locked lasers: a review. Nanomanuf. Metrol., 1, 131-147(2018).

    [36] H. Zhang, H. Wei, X. Wu. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling. Opt. Express, 22, 6597-6604(2014).

    [37] G. Wu, S. Xiong, K. Ni. Parameter optimization of a dual-comb ranging system by using a numerical simulation method. Opt. Express, 23, 32044-32053(2015).

    [38] P. Trocha, M. Karpov, D. Ganin. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

    [39] H. Shi, Y. Song, F. Liang. Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers. Opt. Express, 23, 14057-14069(2015).

    [40] I. Coddington, W. C. Swann, L. Nenadovic. Rapid and precise absolute distance measurements at long range. Nat. Photonics, 3, 351-356(2009).

    [41] E. D. Caldwell, L. C. Sinclair, N. R. Newbury. The time-programmable frequency comb and its use in quantum-limited ranging. Nature, 610, 667-673(2022).

    [42] T. Mitchell, J. Sun, D. T. Reid. Dynamic measurements at up to 130-kHz sampling rates using Ti:sapphire dual-comb distance metrology. Opt. Express, 29, 42119-42126(2021).

    [43] J. Azaña, M. A. Muriel. Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings. IEEE J. Quantum Electron., 36, 517-526(2000).

    [44] B. Li, J. Xing, D. Kwon. Bidirectional mode-locked all-normal dispersion fiber laser. Optica, 7, 961-964(2020).

    [45] T. Ideguchi, T. Nakamura, Y. Kobayashi. Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy. Optica, 3, 748-753(2016).

    [46] N. Prakash, S.-W. Huang, B. Li. Relative timing jitter in a counterpropagating all-normal dispersion dual-comb fiber laser. Optica, 9, 717-723(2022).

    [47] S. M. Link, A. Klenner, M. Mangold. Dual-comb modelocked laser. Opt. Express, 23, 5521-5531(2015).

    Liang Xu, Kun Wang, Chen Liu, Wenying Chen, Chi Zhang, Xinliang Zhang. Transient long-range distance measurement by a Vernier spectral interferometry[J]. Photonics Research, 2024, 12(6): 1107
    Download Citation