• Chinese Journal of Lasers
  • Vol. 51, Issue 9, 0907020 (2024)
Weike Wang1, Muyun Hu1, Di Yang1, Zhuoqun Yuan1, Xiaohua Jia2、**, Jiankai Yang3、***, and Yanmei Liang1、*
Author Affiliations
  • 1Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Tianjin 300350, China
  • 2Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
  • 3Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
  • show less
    DOI: 10.3788/CJL231603 Cite this Article Set citation alerts
    Weike Wang, Muyun Hu, Di Yang, Zhuoqun Yuan, Xiaohua Jia, Jiankai Yang, Yanmei Liang. Glioma Imaging Based on Polarization-Sensitive Optical Coherence Tomography[J]. Chinese Journal of Lasers, 2024, 51(9): 0907020 Copy Citation Text show less
    References

    [2] Sanai N, Berger M S. Glioma extent of resection and its impact on patient outcome[J]. Neurosurgery, 62, 753-764(2008).

    [3] Chang E F, Clark A, Jensen R L et al. Multiinstitutional validation of the University of California at San Francisco low-grade glioma prognostic scoring system[J]. Journal of Neurosurgery, 111, 203-210(2009).

    [4] Consortium M G S, Waterston R H, Lindblad-Toh K et al. Initial sequencing and comparative analysis of the mouse genome[J]. Nature, 420, 520-562(2002).

    [5] Yang Y F, Bec J, Zhou J et al. A prototype high-resolution small-animal PET scanner dedicated to mouse brain imaging[J]. Journal of Nuclear Medicine, 57, 1130-1135(2016).

    [6] Jacobs R E, Ahrens E T, Dickinson M E et al. Towards a microMRI atlas of mouse development[J]. Computerized Medical Imaging and Graphics, 23, 15-24(1999).

    [7] Potapov A A, Goryaynov S A, Okhlopkov V A et al. Laser biospectroscopy and 5-ALA fluorescence navigation as a helpful tool in the meningioma resection[J]. Neurosurgical Review, 39, 437-447(2016).

    [8] Ragan T, Kadiri L R, Venkataraju K U et al. Serial two-photon tomography for automated ex vivo mouse brain imaging[J]. Nature Methods, 9, 255-258(2012).

    [9] Pawliczek D, Dalke C, Fuchs H et al. Spectral domain-optical coherence tomography (SD-OCT) as a monitoring tool for alterations in mouse lenses[J]. Experimental Eye Research, 190, 107871(2020).

    [10] Zhang P F, Zhang T W, Song W Y et al. Review of advances in ophthalmic optical imaging technologies from several mouse retinal imaging methods[J]. Chinese Journal of Lasers, 47, 0207003(2020).

    [11] Hou F, Yang Z H, Gu W Q et al. Intraoperative three-dimensional imaging of neck tissues based on optical coherence tomography[J]. Acta Optica Sinica, 39, 0117001(2019).

    [12] Yang Z H, Shang J W, Liu C L et al. Intraoperative imaging of oral-maxillofacial lesions using optical coherence tomography[J]. Journal of Innovative Optical Health Sciences, 13, 2050010(2020).

    [13] Zhang X Y, Zhu J. Research progress and applications of endoscopic optical coherence tomography[J]. Chinese Journal of Lasers, 50, 2107103(2023).

    [14] Miao Q R, Wang H X, Yu Y et al. Application of optical coherence tomography in fingertip biometrics[J]. Laser & Optoelectronics Progress, 60, 0811012(2023).

    [15] Liang Y M, Yang Z H, Shang J W et al. Imaging technologies in oral cancer screening and diagnosis and their development trends[J]. Chinese Journal of Lasers, 50, 1507101(2023).

    [16] Kut C, Chaichana K L, Xi J F et al. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography[J]. Science Translational Medicine, 7, 292ra100(2015).

    [17] Dolganova I N, Aleksandrova P V, Nikitin P V et al. Capability of physically reasonable OCT-based differentiation between intact brain tissues, human brain gliomas of different WHO grades, and glioma model 101.8 from rats[J]. Biomedical Optics Express, 11, 6780-6798(2020).

    [18] de Boer J F, Hitzenberger C K, Yasuno Y. Polarization sensitive optical coherence tomography-a review[J]. Biomedical Optics Express, 8, 1838-1873(2017).

    [19] Nakaji H, Kouyama N, Muragaki Y et al. Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography[J]. Journal of Neuroscience Methods, 174, 82-90(2008).

    [20] Liu C J, Shamsan G A, Akkin T et al. Glioma cell migration dynamics in brain tissue assessed by multimodal optical imaging[J]. Biophysical Journal, 117, 1179-1188(2019).

    [21] Yang D, Hu M Y, Zhang M Y et al. High-resolution polarization-sensitive optical coherence tomography for zebrafish muscle imaging[J]. Biomedical Optics Express, 11, 5618-5632(2020).

    [22] Ortega-Quijano N, Marvdashti T, Bowden A K E. Enhanced depolarization contrast in polarization-sensitive optical coherence tomography[J]. Optics Letters, 41, 2350-2353(2016).

    [23] Hu M Y, Yang D, Yang Z H et al. Polarization-sensitive optical coherence tomography for oral squamous cell carcinoma tissue imaging[J]. Acta Optica Sinica, 42, 1017002(2022).

    [24] Blanke N, Chang S B, Novoseltseva A et al. Multiscale label-free imaging of myelin in human brain tissue with polarization-sensitive optical coherence tomography and birefringence microscopy[J]. Biomedical Optics Express, 14, 5946-5964(2023).

    Weike Wang, Muyun Hu, Di Yang, Zhuoqun Yuan, Xiaohua Jia, Jiankai Yang, Yanmei Liang. Glioma Imaging Based on Polarization-Sensitive Optical Coherence Tomography[J]. Chinese Journal of Lasers, 2024, 51(9): 0907020
    Download Citation