• High Power Laser and Particle Beams
  • Vol. 35, Issue 8, 082004 (2023)
Cheng Ning, Weihao Huang, Chuang Xue, and Wu Wen
Author Affiliations
  • Beijing Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
  • show less
    DOI: 10.11884/HPLPB202335.230133 Cite this Article
    Cheng Ning, Weihao Huang, Chuang Xue, Wu Wen. Numerical studies of the implosion behavior and radiation field of Z-pinch dynamic hohlraums with embedded hard foam layer and capsule[J]. High Power Laser and Particle Beams, 2023, 35(8): 082004 Copy Citation Text show less
    References

    [1] Tollefson J, Gibney E. Nuclear-fusion lab achieves ‘ignition’: what does it mean?[J]. Nature, 612, 597-598(2022).

    [2] Abu-Shawareb H, Acree R, Adams P, et al. Lawson criterion for ignition exceeded in an inertial fusion experiment[J]. Physical Review Letters, 129, 075001(2022).

    [3] Kritcher A L, Zylstra A B, Callahan D A, et al. Design of an inertial fusion experiment exceeding the Lawson criterion for ignition[J]. Physical Review E, 106, 025201(2022).

    [4] Zylstra A B, Kritcher A L, Hurricane O A, et al. Experimental achievement and signatures of ignition at the National Ignition Facility[J]. Physical Review E, 106, 025202(2022).

    [5] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 2, 3933-4024(1995).

    [6] Lan Ke, Liu Jie, Lai Dongxian, et al. High flux symmetry of the spherical hohlraum with octahedral 6LEHs at the hohlraum-to-capsule radius ratio of 5.14[J]. Physics of Plasmas, 21, 010704(2014).

    [7] Lan Ke. Dream fusion in octahedral spherical hohlraum[J]. Matter and Radiation at Extremes, 7, 055701(2022).

    [8] Huo Wenyi, Li Zhichao, Chen Yaohua, et al. First octahedral spherical hohlraum energetics experiment at the SGIII laser facility[J]. Physical Review Letters, 120, 165001(2018).

    [9] Li Xin, Dong Yunsong, Kang Dongguo, et al. First indirect drive experiment using a six-cylinder-port hohlraum[J]. Physical Review Letters, 128, 195001(2022).

    [10] Leeper R J, Alberts T E, Asay J R, et al. Z pinch driven inertial confinement fusion target physics research at Sandia National Laboratories[J]. Nuclear Fusion, 39, 1283-1294(1999).

    [11] Nash T J, Derzon M S, Chandler G A, et al. High-temperature dynamic hohlraums on the pulsed power driver Z[J]. Physics of Plasmas, 6, 2023-2029(1999).

    [12] Bailey J E, Chandler G A, Slutz S A, et al. X-ray imaging measurements of capsule implosions driven by a Z-pinch dynamic hohlraum[J]. Physical Review Letters, 89, 095004(2002).

    [13] Rochau G A, Bailey J E, Maron Y, et al. Radiating shock measurements in the Z-pinch dynamic hohlraum[J]. Physical Review Letters, 100, 125004(2008).

    [14] Bailey J E, Chandler G A, Mancini R C, et al. Dynamic hohlraum radiation hydrodynamics[J]. Physics of Plasmas, 13, 056301(2006).

    [15] Rochau G A, Bailey J E, Chandler G A, et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Physics and Controlled Fusion, 49, B591-B600(2007).

    [16] Ruiz C L, Cooper G W, Slutz S A, et al. Production of thermonuclear neutrons from deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums[J]. Physical Review Letters, 93, 015001(2004).

    [17] Slutz S A, Peterson K J, Vesey R A, et al. Integrated two-dimensional simulations of dynamic hohlraum driven inertial fusion capsule implosions[J]. Physics of Plasmas, 13, 102701(2006).

    [18] Jiang Shuqing, Ning Jiamin, Chen Faxin, . Preliminary experimental study on implosion dynamics and radiation character of Z-pinch dynamic hohlraum[J]. Acta Physica Sinica, 62, 155203(2013).

    [19] Huang Xianbin, Ren Xiaodong, Dan Jiakun, et al. Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility[J]. Physics of Plasmas, 24, 092704(2017).

    [20] Chu Y Y, Wang Z, Qi J M, et al. Numerical performance assessment of double-shell targets for Z-pinch dynamic hohlraum[J]. Matter and Radiation at Extremes, 7, 035902(2022).

    [21] Wu Fuyuan, Chu Yanyun, Ye Fan, . One-dimensional numerical investigation on the formation of Z-pinch dynamic hohlraum using the code MULTI[J]. Acta Physica Sinica, 66, 215201(2017).

    [22] Mao Chongyang, Wen Wu, Xiao Delong, et al. Analytical physical models for cryogenic double-shell capsule design driven by Z-pinch dynamic Hohlraum[J]. Physics of Plasmas, 28, 092706(2021).

    [23] Chen Shijia, Ma Yanyun, Wu Fuyuan, et al. Simulations on the multi-shell target ignition driven by radiation pulse in Z-pinch dynamic hohlraum[J]. Chinese Physics B, 30, 115201(2021).

    [24] Ramis R, Meyer-ter-Vehn J, Ramírez J. MULTI2D–a computer code for two-dimensional radiation hydrodynamics[J]. Computer Physics Communications, 180, 977-994(2009).

    [25] Ning Cheng, Chen Zhongwang. 2-D numerical investigation of the formation of Z-pinch-driven dynamic hohlraum at 8-MA current level[J]. IEEE Transactions on Plasma Science, 46, 3794-3804(2018).

    [26] Chen Zhongwang, Ning Cheng. Simulation of forming process of Z-pinch dynamic hohlraum based on the program MULTI2D-Z[J]. Acta Physica Sinica, 66, 125202(2017).

    [27] Ning Cheng, Feng Zhixing, Xue Chuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch[J]. Acta Physica Sinica, 63, 125208(2014).

    Cheng Ning, Weihao Huang, Chuang Xue, Wu Wen. Numerical studies of the implosion behavior and radiation field of Z-pinch dynamic hohlraums with embedded hard foam layer and capsule[J]. High Power Laser and Particle Beams, 2023, 35(8): 082004
    Download Citation