• Laser & Optoelectronics Progress
  • Vol. 61, Issue 9, 0900010 (2024)
Jinyang Wang1, Jin Xia1, and Huiliang Zhang1、2、3、*
Author Affiliations
  • 1School of Mathematical and Physical Science and Engineering, Hebei University of Engineering, Handan 056038, Hebei , China
  • 2Hebei Computational Optical Imaging and Photoelectric Detection Technology Innovation Center, Handan 056038, Hebei , China
  • 3Hebei International Joint Research Center for Computational Optical Imaging and Intelligent Sensing, Handan 056038, Hebei , China
  • show less
    DOI: 10.3788/LOP231442 Cite this Article Set citation alerts
    Jinyang Wang, Jin Xia, Huiliang Zhang. Research Progress of Flexible Surface Enhanced Raman Scattering Substrates[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0900010 Copy Citation Text show less
    References

    [1] Bharati M S S, Soma V R. Flexible SERS substrates for hazardous materials detection: recent advances[J]. Opto-Electronic Advances, 4, 210048(2021).

    [2] Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 26, 163-166(1974).

    [3] Moskovits M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals[J]. The Journal of Chemical Physics, 69, 4159-4161(1978).

    [4] Rajesh Y, Bharati M S S, Rao S V et al. ZnO nanowire arrays decorated with titanium nitride nanoparticles as surface-enhanced Raman scattering substrates[J]. Applied Physics A, 127, 270(2021).

    [5] Lan L L, Gao Y M, Fan X C et al. The origin of ultrasensitive SERS sensing beyond plasmonics[J]. Frontiers of Physics, 16, 43300(2021).

    [6] Lombardi J R, Birke R L. A unified view of surface-enhanced Raman scattering[J]. Accounts of Chemical Research, 42, 734-742(2009).

    [7] Yin Z, Xu K C, Jiang S Z et al. Recent progress on two-dimensional layered materials for surface enhanced Raman spectroscopy and their applications[J]. Materials Today Physics, 18, 100378(2021).

    [8] Basu N, Satya Bharathi M S, Sharma M et al. Large area few-layer hexagonal boron nitride as a Raman enhancement material[J]. Nanomaterials, 11, 622(2021).

    [9] Bryche J F, Tsigara A, Bélier B et al. Surface enhanced Raman scattering improvement of gold triangular nanoprisms by a gold reflective underlayer for chemical sensing[J]. Sensors and Actuators B: Chemical, 228, 31-35(2016).

    [10] Hatab N A, Hsueh C H, Gaddis A L et al. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy[J]. Nano Letters, 10, 4952-4955(2010).

    [11] Yang J, Li J B, Du Z R et al. Laser hybrid micro/nano-structuring of Si surfaces in air and its applications for SERS detection[J]. Scientific Reports, 4, 6657(2014).

    [12] Tu X L, Li Z, Lu J et al. In situ preparation of Ag nanoparticles on silicon wafer as highly sensitive SERS substrate[J]. RSC Advances, 8, 2887-2891(2018).

    [13] Bakar N A, Salleh M M, Umar A A et al. Direct deposition of silver nanoplates on quartz surface by sequence pre-treatment hydroxylation and silanisation[J]. MethodsX, 4, 486-491(2017).

    [14] Fu Q, Zhan Z B, Dou J X et al. Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique[J]. ACS Applied Materials & Interfaces, 7, 13322-13328(2015).

    [15] Lai C H, Lai L, Zhang Z J et al. Nitrate detection in water based on AuNPs-cysteamine SERS substrate[J]. Chinese Journal of Lasers, 49, 1111002(2022).

    [16] Tang Z M, Sun N, Zhang J. Study on Raman enhancement of silver/paper composite structure using inkjet printing[J]. Acta Optica Sinica, 43, 0929001(2023).

    [17] Zhou Y X, Yang J, Xu T R et al. Preparation of nanosphere SERS substrate by mixed resist method[J]. Acta Optica Sinica, 42, 1524002(2022).

    [18] Xu K C, Zhou R, Takei K et al. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics[J]. Advanced Science, 6, 1900925(2019).

    [19] Restaino S M, White I M. A critical review of flexible and porous SERS sensors for analytical chemistry at the point-of-sample[J]. Analytica Chimica Acta, 1060, 17-29(2019).

    [20] Garg A, Nam W, Zhou W. Reusable surface-enhanced Raman spectroscopy membranes and textiles via template-assisted self-assembly and micro/nanoimprinting[J]. ACS Applied Materials & Interfaces, 12, 56290-56299(2020).

    [21] Wang Y C, Jin Y H, Xiao X Y et al. Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection[J]. Nanoscale, 10, 15195-15204(2018).

    [22] Gao R K, Song X F, Zhan C B et al. Light trapping induced flexible wrinkled nanocone SERS substrate for highly sensitive explosive detection[J]. Sensors and Actuators B: Chemical, 314, 128081(2020).

    [23] Cheng Y W, Hsiao C W, Zeng Z L et al. The interparticle gap manipulation of Au-Ag nanoparticle arrays deposited on flexible and atmospheric plasma-treated PDMS substrate for SERS detection[J]. Surface and Coatings Technology, 389, 125653(2020).

    [24] Gao R K, Qian H Y, Weng C G et al. A SERS stamp: multiscale coupling effect of silver nanoparticles and highly ordered nano-micro hierarchical substrates for ultrasensitive explosive detection[J]. Sensors and Actuators B: Chemical, 321, 128543(2020).

    [25] Jiang J L, Zou S M, Ma L W et al. Surface-enhanced Raman scattering detection of pesticide residues using transparent adhesive tapes and coated silver nanorods[J]. ACS Applied Materials & Interfaces, 10, 9129-9135(2018).

    [26] Wang K Q, Sun D W, Pu H B et al. Stable, flexible, and high-performance SERS chip enabled by a ternary film-packaged plasmonic nanoparticle array[J]. ACS Applied Materials & Interfaces, 11, 29177-29186(2019).

    [27] Huo D X, Chen B, Meng G W et al. Ag-nanoparticles@ bacterial nanocellulose as a 3D flexible and robust surface-enhanced Raman scattering substrate[J]. ACS Applied Materials & Interfaces, 12, 50713-50720(2020).

    [28] Zhang Y, Zhou J, He Y et al. SERS active fibers from wet-spinning of alginate with gold nanoparticles for pH sensing[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 271, 120848(2022).

    [29] Han D Y, Li Y X, Jiang X et al. A facile method to prepare transparent and stretchable epidermal thin film heaters[J]. Composites Science and Technology, 168, 460-466(2018).

    [30] Zhang S Y, Lin C C, Xia Z et al. A facile and novel design of multifunctional electronic skin based on polydimethylsiloxane with micropillars for signal monitoring[J]. Journal of Materials Chemistry B, 8, 8315-8322(2020).

    [31] Xia D C, Jiang P P, Cai Z W et al. Ag nanocubes monolayer-modified PDMS as flexible SERS substrates for pesticides sensing[J]. Microchimica Acta, 189, 232(2022).

    [32] Zhou Z A, Bai X H, Li P S et al. Silver nanocubes monolayers as a SERS substrate for quantitative analysis[J]. Chinese Chemical Letters, 32, 1497-1501(2021).

    [33] Lin X A, Fang G Q, Liu Y L et al. Marangoni effect-driven transfer and compression at three-phase interfaces for highly reproducible nanoparticle monolayers[J]. The Journal of Physical Chemistry Letters, 11, 3573-3581(2020).

    [34] Alyami A, Quinn A J, Iacopino D. Flexible and transparent surface enhanced raman scattering (SERS)-active Ag NPs/PDMS composites for in-situ detection of food contaminants[J]. Talanta, 201, 58-64(2019).

    [35] Ma Y, Du Y Y, Chen Y et al. Intrinsic Raman signal of polymer matrix induced quantitative multiphase SERS analysis based on stretched PDMS film with anchored Ag nanoparticles/Au nanowires[J]. Chemical Engineering Journal, 381, 122710(2020).

    [36] Xu D W, Su W, Lu H W et al. A gold nanoparticle doped flexible substrate for microplastics SERS detection[J]. Physical Chemistry Chemical Physics: PCCP, 24, 12036-12042(2022).

    [37] Huang D Q, Zhuang Z F, Wang Z et al. Black phosphorus-Au filter paper-based three-dimensional SERS substrate for rapid detection of foodborne bacteria[J]. Applied Surface Science, 497, 143825(2019).

    [38] Wang Q Z, Liu Y N, Bai Y W et al. Superhydrophobic SERS substrates based on silver dendrite-decorated filter paper for trace detection of nitenpyram[J]. Analytica Chimica Acta, 1049, 170-178(2019).

    [39] Ding Q, Kang Z W, He X S et al. Eggshell membrane-templated gold nanoparticles as a flexible SERS substrate for detection of thiabendazole[J]. Microchimica Acta, 186, 1-9(2019).

    [40] Yao L, Dai P, Ouyang L et al. A sensitive and reproducible SERS sensor based on natural lotus leaf for paraquat detection[J]. Microchemical Journal, 160, 105728(2021).

    [41] Guo L T, Cao H W, Cao L P et al. SERS study of wheat leaves substrates with two different structures[J]. Optics Communications, 510, 127921(2022).

    [42] Sun M X, Liang A P, Watson G S et al. Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings[J]. PLoS One, 7, e35056(2012).

    [43] Ensikat H J, Ditsche-Kuru P, Neinhuis C et al. Superhydrophobicity in perfection: the outstanding properties of the lotus leaf[J]. Beilstein Journal of Nanotechnology, 2, 152-161(2011).

    [44] Bhushan B, Nosonovsky M. The rose petal effect and the modes of superhydrophobicity[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368, 4713-4728(2010).

    [45] Guo L, Zhang C X, Deng L et al. Cicada wing decorated by silver nanoparticles as low-cost and active/sensitive substrates for surface-enhanced Raman scattering[J]. Journal of Applied Physics, 115, 213101(2014).

    [46] Lü M Y, Teng H Y, Chen Z Y et al. Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering[J]. Sensors and Actuators B: Chemical, 209, 820-827(2015).

    [47] Liu S J, Cui R K, Ma Y B et al. Plasmonic cellulose textile fiber from waste paper for BPA sensing by SERS[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 227, 117664(2020).

    [48] Bian X Y, Xu J T, Pu Y et al. Ag-coated cotton fabric as ultrasensitive and flexible SERS substrate[J]. Journal of Industrial Textiles, 51, 712S-727S(2022).

    [49] Yang J, Xu J T, Bian X Y et al. Flexible and reusable SERS substrate for rapid conformal detection of residue on irregular surface[J]. Cellulose, 28, 921-936(2021).

    [50] Gao W, Xu J T, Cheng C et al. Rapid and highly sensitive SERS detection of fungicide based on flexible “wash free” metallic textile[J]. Applied Surface Science, 512, 144693(2020).

    [51] Wu J J, Xi J F, Chen H B et al. Flexible 2D nanocellulose-based SERS substrate for pesticide residue detection[J]. Carbohydrate Polymers, 277, 118890(2022).

    [52] Zhu T Y, Sun Y, Lu W X et al. Theoretical and experimental investigation of the flexible Ag nano-tree@Cu mesh SERS substrate[J]. Journal of Alloys and Compounds, 908, 164622(2022).

    [53] Gao Y K, Zhang C M, Yang Y X et al. A high sensitive glucose sensor based on Ag nanodendrites/Cu mesh substrate via surface-enhanced Raman spectroscopy and electrochemical analysis[J]. Journal of Alloys and Compounds, 863, 158758(2021).

    Jinyang Wang, Jin Xia, Huiliang Zhang. Research Progress of Flexible Surface Enhanced Raman Scattering Substrates[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0900010
    Download Citation