• Nano-Micro Letters
  • Vol. 16, Issue 1, 147 (2024)
Roohallah Saberi Riseh1、*, Mohadeseh Hassanisaadi1, Masoumeh Vatankhah1, Rajender S. Varma2、**, and Vijay Kumar Thakur3、***
Author Affiliations
  • 1Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
  • 2Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
  • 3Biorefining and Advanced Materials Research Center, Scotland’s Rural Collage (SRUC), Edinburgh EH9 3JG, UK
  • show less
    DOI: 10.1007/s40820-024-01348-x Cite this Article
    Roohallah Saberi Riseh, Mohadeseh Hassanisaadi, Masoumeh Vatankhah, Rajender S. Varma, Vijay Kumar Thakur. Nano/Micro-Structural Supramolecular Biopolymers: Innovative Networks with the Boundless Potential in Sustainable Agriculture[J]. Nano-Micro Letters, 2024, 16(1): 147 Copy Citation Text show less
    References

    [1] C.F. Okey-Onyesolu, M. Hassanisaadi, M. Bilal, M. Barani, A. Rahdar et al., Nanomaterials as nanofertilizers and nanopesticides: an overview. ChemistrySelect 6, 8645–8663 (2021).

    [2] M. Chaichi, A. Nemati, A. Dadrasi, M. Heydari, M. Hassanisaadi et al., Germination of Triticumaestivum L.: effects of soil–seed interaction on the growth of seedlings. Soil Syst. 6, 37 (2022).

    [3] M. Hassanisaadi, M. Barani, A. Rahdar, M. Heidary, A. Thysiadou et al., Role of agrochemical-based nanomaterials in plants: biotic and abiotic stress with germination improvement of seeds. Plant Growth Regul. 97, 375–418 (2022).

    [4] A. Gamage, R. Gangahagedara, J. Gamage, N. Jayasinghe, N. Kodikara et al., Role of organic farming for achieving sustainability in agriculture. Farming Syst. 1, 100005 (2023).

    [5] M. Hassanisaadi, G.H. Shahidi Bonjar, A. Hosseinipour, R. Abdolshahi, E. Ait Barka et al., Biological control of Pythium aphanidermatum, the causal agent of tomato root rot by two Streptomyces root symbionts. Agronomy 11, 846 (2021).

    [6] R.S. Riseh, M.G. Vazvani, J.F. Kennedy, β–glucan-induced disease resistance in plants: a review. Int. J. Biol. Macromol. 253, 127043 (2023).

    [7] H.E. Emam, T.I. Shaheen, Investigation into the role of surface modification of cellulose nanocrystals with succinic anhydride in dye removal. J. Polym. Environ. 27, 2419–2427 (2019).

    [8] R.S. Riseh, M. Hassanisaadi, M. Vatankhah, F. Soroush, R.S. Varma, Nano/microencapsulation of plant biocontrol agents by chitosan, alginate, and other important biopolymers as a novel strategy for alleviating plant biotic stresses. Int. J. Biol. Macromol. 222, 1589–1604 (2022).

    [9] R.S. Riseh, M. Hassanisaadi, M. Vatankhah, J.F. Kennedy, Encapsulating biocontrol bacteria with starch as a safe and edible biopolymer to alleviate plant diseases: a review. Carbohydr. Polym. 302, 120384 (2023).

    [10] R.S. Riseh, M.G. Vazvani, M. Hassanisaadi, V.K. Thakur, Agricultural wastes: a practical and potential source for the isolation and preparation of cellulose and application in agriculture and different industries. Ind. Crops Prod. 208, 117904 (2024).

    [11] M.E. Valentine, B.D. Kirby, T.R. Withers, S.L. Johnson, T.E. Long et al., Generation of a highly attenuated strain of Pseudomonas aeruginosa for commercial production of alginate. Microb. Biotechnol. 13, 162–175 (2020).

    [12] R. Saberi Riseh, M. Gholizadeh Vazvani, M. Hassanisaadi, V.K. Thakur, J.F. Kennedy, Use of whey protein as a natural polymer for the encapsulation of plant biocontrol bacteria: a review. Int. J. Biol. Macromol. 234, 123708 (2023).

    [13] R. Saberi Riseh, M. Vatankhah, M. Hassanisaadi, J.F. Kennedy, Chitosan-based nanocomposites as coatings and packaging materials for the postharvest improvement of agricultural product: a review. Carbohydr. Polym. 309, 120666 (2023).

    [14] R. Saberi Riseh, M. Vatankhah, M. Hassanisaadi, Z. Shafiei-Hematabad, J.F. Kennedy, Advancements in coating technologies: unveiling the potential of chitosan for the preservation of fruits and vegetables. Int. J. Biol. Macromol. 254, 127677 (2024).

    [15] R.S. Riseh, M. Hassanisaadi, M. Vatankhah, S.A. Babaki, E.A. Barka, Chitosan as a potential natural compound to manage plant diseases. Int. J. Biol. Macromol. 220, 998–1009 (2022).

    [16] M.M. Pour, R.S. Riseh, R. Ranjbar-Karimi, M. Hassanisaadi, A. Rahdar et al., Microencapsulation of Bacillus velezensis using alginate-gum polymers enriched with TiO2 and SiO2 nanoparticles. Micromachines 13, 1423 (2022).

    [17] M. Hassanisaadi, R. Saberi Riseh, A. Rabiei, R.S. Varma, J.F. Kennedy, Nano/micro-cellulose-based materials as remarkable sorbents for the remediation of agricultural resources from chemical pollutants. Int. J. Biol. Macromol. 246, 125763 (2023).

    [18] D.S. Stefan, M. Bosomoiu, A.M. Dancila, M. Stefan, Review of soil quality improvement using biopolymers from leather waste. Polymers 14, 1928 (2022).

    [19] R. Saberi Riseh, M. Vatankhah, M. Hassanisaadi, J.F. Kennedy, Increasing the efficiency of agricultural fertilizers using cellulose nanofibrils: a review. Carbohydr. Polym. 321, 121313 (2023).

    [20] T.O. Machado, J. Grabow, C. Sayer, P.H.H. de Araújo, M.L. Ehrenhard et al., Biopolymer-based nanocarriers for sustained release of agrochemicals: a review on materials and social science perspectives for a sustainable future of agri- and horticulture. Adv. Colloid Interface Sci. 303, 102645 (2022).

    [21] Q. Zhang, D. Tang, J. Zhang, R. Ni, L. Xu et al., Self-healing heterometallic supramolecular polymers constructed by hierarchical assembly of triply orthogonal interactions with tunable photophysical properties. J. Am. Chem. Soc. 141, 17909–17917 (2019).

    [22] Y. Zhu, W. Zheng, W. Wang, H.-B. Yang, When polymerization meets coordination-driven self-assembly: metallo-supramolecular polymers based on supramolecular coordination complexes. Chem. Soc. Rev. 50, 7395–7417 (2021).

    [23] A.S. Novikov, Non-covalent interactions in polymers. Polymers 15, 1139 (2023).

    [24] H.E. Emam, T.I. Shaheen, Design of a dual pH and temperature responsive hydrogel based on esterified cellulose nanocrystals for potential drug release. Carbohydr. Polym. 278, 118925 (2022).

    [25] H.E. Emam, F.H.H. Abdellatif, R.M. Abdelhameed, Cationization of celluloisc fibers in respect of liquid fuel purification. J. Clean. Prod. 178, 457–467 (2018).

    [26] R. Pérez-Pedroza, A. Ávila-Ramírez, Z. Khan, M. Moretti, C.A.E. Hauser, Supramolecular biopolymers for tissue engineering. Adv. Polym. Technol. 2021, 8815006 (2021).

    [27] A. Roy, K. Manna, S. Pal, Recent advances in various stimuli-responsive hydrogels: from synthetic designs to emerging healthcare applications. Mater. Chem. Front. 6, 2338–2385 (2022).

    [28] F. Fontana, F. Gelain, Modeling of supramolecular biopolymers: leading the in silico revolution of tissue engineering and nanomedicine. Nanotechnol. Rev. 11, 2965–2996 (2022).

    [29] H.E. Emam, M. El-Shahat, A.K. Allayeh, H.B. Ahmed, Functionalized starch for formulation of graphitic carbon nanodots as viricidal/anticancer laborers. Biocatal. Agric. Biotechnol. 47, 102577 (2023).

    [30] H.E. Emam, M. El-Shahat, R.M. Abdelhameed, Iodine removal efficiently from wastewater by magnetic Fe3O4 incorporated within activated porous cellulose. Ind. Crops Prod. 193, 116201 (2023).

    [31] H.E. Emam, A.L. Mohamed, Controllable release of povidone-iodine from networked Pectin@Carboxymethyl pullulan hydrogel. Polymers 13, 3118 (2021).

    [32] R. Vill, J. Gülcher, P. Khalatur, P. Wintergerst, A. Stoll et al., Supramolecular polymerization: challenges and advantages of various methods in assessing the aggregation mechanism. Nanoscale 11, 663–674 (2019).

    [33] D. Baker, A surprising simplicity to protein folding. Nature 405, 39–42 (2000).

    [34] D.D. Prabhu, K. Aratsu, Y. Kitamoto, H. Ouchi, T. Ohba et al., Self-folding of supramolecular polymers into bioinspired topology. Sci. Adv. 4, eaat8466 (2018).

    [35] M. Wypij, J. Trzcińska-Wencel, P. Golińska, G.D. Avila-Quezada, A.P. Ingle et al., The strategic applications of natural polymer nanocomposites in food packaging and agriculture: chances, challenges, and consumers’ perception. Front. Chem. 10, 1106230 (2023).

    [36] R.K. Farag, S. Hani, Crosslinked polymer hydrogels. Reacti. Funct. Polym. (2020).

    [37] M. Rizwan, S. Rubina Gilani, A. Iqbal Durani, S. Naseem, Materials diversity of hydrogel: synthesis, polymerization process and soil conditioning properties in agricultural field. J. Adv. Res. 33, 15–40 (2021).

    [38] N.A. Zainul Armir, A. Zulkifli, S. Gunaseelan, S.D. Palanivelu, K.M. Salleh et al., Regenerated cellulose products for agricultural and their potential: a review. Polymers 13, 3586 (2021).

    [39] H. Xiang, J. Meng, W. Shao, D. Zeng, J. Ji et al., Plant protein-based self-assembling core–shell nanocarrier for effectively controlling plant viruses: evidence for nanoparticle delivery behavior, plant growth promotion, and plant resistance induction. Chem. Eng. J. 464, 142432 (2023).

    [40] S.N. Sawant, Development of biosensors from biopolymer composites. Biopolym. Compos. Electron. (2017).

    [41] Z. Yhobu, A. Siddiqa, M. Padaki, S. Budagumpi, D.H. Nagaraju, Lignocellulose biopolymers and electronically conducting polymers: toward sustainable energy storage applications. Energy Fuels 36, 14625–14656 (2022).

    [42] P.C. Pires, F. Mascarenhas-Melo, K. Pedrosa, D. Lopes, J. Lopes et al., Polymer-based biomaterials for pharmaceutical and biomedical applications: a focus on topical drug administration. Eur. Polym. J. 187, 111868 (2023).

    [43] J.A. Sánchez-Fernández, Structural strategies for supramolecular hydrogels and their applications. Polymers 15, 1365 (2023).

    [44] L. Sun, Z. Zhang, K. Leng, B. Li, C. Feng et al., Can supramolecular polymers become another material choice for polymer flooding to enhance oil recovery? Polymers 14, 4405 (2022).

    [45] R. Freeman, J. Boekhoven, M.B. Dickerson, R.R. Naik, S.I. Stupp, Biopolymers and supramolecular polymers as biomaterials for biomedical applications. MRS Bull. 40, 1089–1101 (2015).

    [46] Y. Chen, S. Sun, D. Lu, Y. Shi, Y. Yao, Water-soluble supramolecular polymers constructed by macrocycle-based host-guest interactions. Chin. Chem. Lett. 30, 37–43 (2019).

    [47] X. Zottig, M. Côté-Cyr, D. Arpin, D. Archambault, S. Bourgault, Protein supramolecular structures: from self-assembly to nanovaccine design. Nanomaterials 10, 1008 (2020).

    [48] J. Kondo, S. Nakamura, BasePairPuzzle: molecular models for manipulating the concept of hydrogen bonds and base pairs in nucleic acids. J. Chem. Educ. 100, 946–954 (2023).

    [49] J.L. Fredricks, A.M. Jimenez, P. Grandgeorge, R. Meidl, E. Law et al., Hierarchical biopolymer-based materials and composites. J. Polym. Sci. 61, 2585–2632 (2023).

    [50] R. Ladiè, C. Cosentino, I. Tagliaro, C. Antonini, G. Bianchini et al., Supramolecular structuring of hyaluronan-lactose-modified chitosan matrix: towards high-performance biopolymers with excellent biodegradation. Biomolecules 11, 389 (2021).

    [51] H.E. Emam, Carbon quantum dots derived from polysaccharides: chemistry and potential applications. Carbohydr. Polym. 324, 121503 (2024).

    [52] H.B. Ahmed, H.E. Emam, Polysaccharide-based metal nanoparticles. Polysacch. Nanoparticles. (2022).

    [53] M. Diener, J. Adamcik, A. Sánchez-Ferrer, F. Jaedig, L. Schefer et al., Primary, secondary, tertiary and quaternary structure levels in linear polysaccharides: from random coil, to single Helix to supramolecular assembly. Biomacromol 20, 1731–1739 (2019).

    [54] S. Talreja, S. Tiwari, Supramolecular chemistry: unveiling the fascinating world of non-covalent interactions and complex assemblies. J. Pharm. Pharmacol. Res. 7, 133–139 (2023).

    [55] A. Acevedo-Fani, A. Dave, H. Singh, Nature-assembled structures for delivery of bioactive compounds and their potential in functional foods. Front. Chem. 8, 564021 (2020).

    [56] H. Jing, J. Shi, P. Guoab, S. Guan, H. Fu et al., Hydrogels based on physically cross-linked network with high mechanical property and recasting ability. Colloids Surf. A Physicochem. Eng. Aspects 611, 125805 (2021).

    [57] M. Bustamante-Torres, D. Romero-Fierro, B. Arcentales-Vera, K. Palomino, H. Magaña et al., Hydrogels classification according to the physical or chemical interactions and as stimuli-sensitive materials. Gels 7, 182 (2021).

    [58] V.K. Aunpama Devi, R. Shyam, A. Palaniappan, A.K. Jaiswal, T.H. Oh et al., Self-healing hydrogels: preparation, mechanism and advancement in biomedical applications. Polymers 13, 3782 (2021).

    [59] N.H. Thang, T.B. Chien, D.X. Cuong, Polymer-based hydrogels applied in drug delivery: an overview. Gels 9, 523 (2023).

    [60] J. Skopinska-Wisniewska, S. De la Flor, J. Kozlowska, From supramolecular hydrogels to multifunctional carriers for biologically active substances. Int. J. Mol. Sci. 22, 7402 (2021).

    [61] M.Z. Quazi, N. Park, Nanohydrogels: advanced polymeric nanomaterials in the era of nanotechnology for robust functionalization and cumulative applications. Int. J. Mol. Sci. 23, 1943 (2022).

    [62] R.M. Abdelhameed, E. Alzahrani, A.A. Shaltout, H.E. Emam, Temperature-controlled-release of essential oil via reusable mesoporous composite of microcrystalline cellulose and zeolitic imidazole frameworks. J. Ind. Eng. Chem. 94, 134–144 (2021).

    [63] V.D. Rajput, A. Singh, T. Minkina, S. Rawat, S. Mandzhieva et al., Nano-enabled products: challenges and opportunities for sustainable agriculture. Plants 10, 2727 (2021).

    [64] T. Kato, J. Uchida, T. Ichikawa, B. Soberats, Functional liquid-crystalline polymers and supramolecular liquid crystals. Polym. J. 50, 149–166 (2018).

    [65] V.S. Sharma, V.K. Vishwakarma, P.S. Shrivastav, A. Ammathnadu Sudhakar, A.S. Sharma et al., Calixarene functionalized supramolecular liquid crystals and their diverse applications. ACS Omega 7, 45752–45796 (2022).

    [66] P.J. Collings, M. Hird, Introduction to liquid crystals: chemistry and physics. CRC Press, 1–298 (2017).

    [67] C.F.J. Faul, Ionic self-assembly for functional hierarchical nanostructured materials. Acc. Chem. Res. 47, 3428–3438 (2014).

    [68] J. Zhai, C. Fong, N. Tran, C.J. Drummond, Non-lamellar lyotropic liquid crystalline lipid nanoparticles for the next generation of nanomedicine. ACS Nano 13, 6178–6206 (2019).

    [69] J. Prakash, A. Parveen, Y.K. Mishra, A. Kaushik, Nanotechnology-assisted liquid crystals-based biosensors: towards fundamental to advanced applications. Biosens. Bioelectron. 168, 112562 (2020).

    [70] C. Ohm, M. Brehmer, R. Zentel, Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 22, 3366–3387 (2010).

    [71] Z. Wen, K. Yang, J.-M. Raquez, A review on liquid crystal polymers in free-standing reversible shape memory materials. Molecules 25, 1241 (2020).

    [72] T.J. White, D.J. Broer, Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14, 1087–1098 (2015).

    [73] R.S. Kularatne, H. Kim, J.M. Boothby, T.H. Ware, Liquid crystal elastomer actuators: synthesis, alignment, and applications. J. Polym. Sci. Part B Polym. Phys. 55, 395–411 (2017).

    [74] T. Kato, J.M.J. Frechet, Stabilization of a liquid-crystalline phase through noncovalent interaction with a polymer side chain. Macromolecules 22, 3818–3819 (1989).

    [75] D.J. Broer, C.M.W. Bastiaansen, M.G. Debije, A.P.H.J. Schenning, Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems. Angew. Chem. Int. Ed. 51, 7102–7109 (2012).

    [76] T. Kato, N. Hirota, A. Fujishima, J.M.J. Fréchet, Supramolecular hydrogen-bonded liquid–crystalline polymer complexes. Design of side-chain polymers and a host–guest system by noncovalent interaction. J. Polym. Sci. A Polym. Chem. 34, 57–62 (1996).

    [77] J.L.M. van Nunen, B.F.B. Folmer, R.J.M. Nolte, Induction of liquid crystallinity by host–guest interactions. J. Am. Chem. Soc. 119, 283–291 (1997).

    [78] A. Pal, M. Malakoutikhah, G. Leonetti, M. Tezcan, M. Colomb-Delsuc et al., Controlling the structure and length of self-synthesizing supramolecular polymers through nucleated growth and disassembly. Angew. Chem. Int. Ed. 54, 7852–7856 (2015).

    [79] D. Trache, A.F. Tarchoun, M. Derradji, T.S. Hamidon, N. Masruchin et al., Nanocellulose: from fundamentals to advanced applications. Front. Chem. 8, 392 (2020).

    [80] M. Crippa, C. Perego, A.L. de Marco, G.M. Pavan, Molecular communications in complex systems of dynamic supramolecular polymers. Nat. Commun. 13, 2162 (2022).

    [81] W. Zhang, C. Gao, Morphology transformation of self-assembled organic nanomaterials in aqueous solution induced by stimuli-triggered chemical structure changes. J. Mater. Chem. A 5, 16059–16104 (2017).

    [82] S. Chand Mali, S. Raj, R. Trivedi, Nanotechnology a novel approach to enhance crop productivity. Biochem. Biophys. Rep. 24, 100821 (2020).

    [83] J. Baranwal, B. Barse, A. Fais, G.L. Delogu, A. Kumar, Biopolymer: a sustainable material for food and medical applications. Polymers 14, 983 (2022).

    [84] M.C. Camara, E.V.R. Campos, R.A. Monteiro, A. do Espirito Santo Pereira, P.L. de Freitas Proença et al., Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture. J. Nanobiotechnol. 17, 100 (2019).

    [85] A. Detsi, E. Kavetsou, I. Kostopoulou, I. Pitterou, A.R.N. Pontillo et al., Nanosystems for the encapsulation of natural products: the case of chitosan biopolymer as a matrix. Pharmaceutics 12, 669 (2020).

    [86] M.P. Silva, J.P. Fabi, Food biopolymers-derived nanogels for encapsulation and delivery of biologically active compounds: a perspective review. Food Hydrocoll. Health 2, 100079 (2022).

    [87] H.P.S. Abdul Khalil, K. Jha, E.B. Yahya, S. Panchal, N. Patel et al., Insights into the potential of biopolymeric aerogels as an advanced soil-fertilizer delivery systems. Gels 9, 666 (2023).

    [88] H. Sun, Y. Cao, D. Kim, B. Marelli, Biomaterials technology for AgroFood resilience. Adv. Funct. Mater. 32, 2201930 (2022).

    [89] Z. Li, M. Zhang, Progress in the preparation of stimulus-responsive cellulose hydrogels and their application in slow-release fertilizers. Polymers 15, 3643 (2023).

    [90] S. Malik, K. Chaudhary, A. Malik, H. Punia, M. Sewhag et al., Superabsorbent polymers as a soil amendment for increasing agriculture production with reducing water losses under water stress condition. Polymers 15, 161 (2022).

    [91] N.S. Zaim, H.L. Tan, S.M.A. Rahman, N.F. Abu Bakar, M.S. Osman et al., Recent advances in seed coating treatment using nanoparticles and nanofibers for enhanced seed germination and protection. J. Plant Growth Regul. 42, 7374–7402 (2023).

    [92] R.K. Gupta, P. Guha, P.P. Srivastav, Natural polymers in bio-degradable/edible film: a review on environmental concerns, cold plasma technology and nanotechnology application on food packaging—A recent trends. Food Chem. Adv. 1, 100135 (2022).

    [93] Y. Ma, M. Yu, Y. Wang, S. Pan, X. Sun et al., A pH/cellulase dual stimuli-responsive cellulose-coated metal–organic framework for eco-friendly fungicide delivery. Chem. Eng. J. 462, 142190 (2023).

    [94] M.M. Iftime, G.L. Ailiesei, E. Ungureanu, L. Marin, Designing chitosan based eco-friendly multifunctional soil conditioner systems with urea controlled release and water retention. Carbohydr. Polym. 223, 115040 (2019).

    [95] Y. Li, P. Rao, J. Wang, S. Song, R. Wang et al., Study on preparation and application of a multifunctional microspheric soil conditioner based on Arabic gum, gelatin, chitosan and β-cyclodextrin. Int. J. Biol. Macromol. 183, 1851–1860 (2021).

    [96] W. Lu, H. Tang, Y. Li, J. Wang, J. Sun, Preparation and application of a natural microspheric soil conditioner based on gelatin, sodium alginate, and zeolite. ACS Appl. Polym. Mater. 5, 5211–5220 (2023).

    [97] N. Thombare, S. Mishra, M.Z. Siddiqui, U. Jha, D. Singh et al., Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications. Carbohydr. Polym. 185, 169–178 (2018).

    [98] C. Ding, S. Zhang, X. Fu, T. Liu, L. Shao et al., Robust supramolecular composite hydrogels for sustainable and “visible” agriculture irrigation. J. Mater. Chem. A 9, 24613–24621 (2021).

    [99] C.E. Elhassani, A. El Gharrak, Y. Essamlali, S. Elamiri, K. Dânoun et al., Lignin nanoparticles filled chitosan/polyvinyl alcohol polymer blend as a coating material of urea with a slow-release property. J. Appl. Polym. Sci. 140, e53755 (2023).

    [100] M.K. Lima-Tenório, F. Furmam-Cherobim, P.R. Karas, D. Hyeda, W.Y. Takahashi et al., Azospirillum brasilense AbV5/6 encapsulation in dual-crosslinked beads based on cationic starch. Carbohydr. Polym. 308, 120631 (2023).

    [101] J. Yang, Y. Gao, Z. Zhou, J. Tang, G. Tang et al., A simple and green preparation process for PRO@PIL-PHS-PEC microcapsules by using phosphonium ionic liquid as a multifunctional additive. Chem. Eng. J. 424, 130371 (2021).

    [102] A. Singh, A.K. Kar, D. Singh, R. Verma, N. Shraogi et al., pH-responsive eco-friendly chitosan modified cenosphere/alginate composite hydrogel beads as carrier for controlled release of Imidacloprid towards sustainable pest control. Chem. Eng. J. 427, 131215 (2022).

    [103] G. Huang, L. Huang, C. Geng, T. Lan, X. Huang et al., Green and multifunctional chitosan-based conformal coating as a controlled release platform for fruit preservation. Int. J. Biol. Macromol. 219, 767–778 (2022).

    [104] C. Qin, C. Chen, Q. Xie, L. Wang, X. He et al., Amperometric enzyme electrodes of glucose and lactate based on poly(diallyldimethylammonium)-alginate-metal ion-enzyme biocomposites. Anal. Chim. Acta 720, 49–56 (2012).

    [105] C.-Y. Hsu, T. Sato, S. Moriyama, M. Higuchi, A Co(II)-based metallo-supramolecular polymer as a novel enzyme immobilization matrix for electrochemical glucose biosensing. Eur. Polym. J. 83, 499–506 (2016).

    [106] L. Wang, Y. Yao, J. Li, K. Liu, F. Wu, A state-of-the-art review of organic polymer modifiers for slope eco-engineering. Polymers 15, 2878 (2023).

    [107] G. Sharma, S. Sharma, A. Kumar, C.W. Lai, M. Naushad et al., Activated carbon as superadsorbent and sustainable material for diverse applications. Adsorpt. Sci. Technol. 2022, 4184809 (2022).

    [108] C. Wang, B. Yang, X. Ji, R. Zhang, H. Wu, Study on activated carbon/silica gel/lithium chloride composite desiccant for solid dehumidification. Energy 251, 123874 (2022).

    [109] M. Moradian, A. Maleki, A. Alinejadian Bidabadi, The effect of super absorbent polymer a, perlite, and zeolite on physical properties of sandy loam soil. Iranian J. Soil Water Res. 50(5), 1219–1230 (2019)

    [110] M. Moradi Pour, R. Saberi Riseh, Y.A. Skorik, Sodium alginate-gelatin nanoformulations for encapsulation of Bacillus velezensis and their use for biological control of pistachio gummosis. Materials 15, 2114 (2022).

    [111] R. Saberi Riseh, M. Gholizadeh Vazvani, M. Hassanisaadi, Y.A. Skorik, Micro-/ nano-carboxymethyl cellulose as a promising biopolymer with prospects in the agriculture sector: a review. Polymers 15, 440 (2023).

    [112] R.S. Riseh, E. Tamanadar, M.M. Pour, V.K. Thakur, Novel approaches for encapsulation of plant probiotic bacteria with sustainable polymer gums: application in the management of pests and diseases. Adv. Polym. Technol. 2022, 4419409 (2022).

    [113] R. Saberi Riseh, Y.A. Skorik, V.K. Thakur, M. Moradi Pour, E. Tamanadar et al., Encapsulation of plant biocontrol bacteria with alginate as a main polymer material. Int. J. Mol. Sci. 22, 11165 (2021).

    [114] R. Saberi-Riseh, M. Moradi-Pour, R. Mohammadinejad, V.K. Thakur, Biopolymers for biological control of plant pathogens: advances in microencapsulation of beneficial microorganisms. Polymers 13, 1938 (2021).

    [115] R. Saberi Riseh, M. Moradi Pour, E. Ait Barka, A novel route for double-layered encapsulation of Streptomyces fulvissimus Uts22 by alginate–arabic gum for controlling of Pythium aphanidermatum in cucumber. Agronomy 12, 655 (2022).

    [116] B. Chen, H. Zhao, S. Chen, F. Long, B. Huang et al., A magnetically recyclable chitosan composite adsorbent functionalized with EDTA for simultaneous capture of anionic dye and heavy metals in complex wastewater. Chem. Eng. J. 356, 69–80 (2019).

    [117] M.N. Alam, L.P. Christopher, Natural cellulose-chitosan cross-linked superabsorbent hydrogels with superior swelling properties. ACS Sustain. Chem. Eng. 6, 8736–8742 (2018).

    [118] A. Saha, S. Sekharan, U. Manna, Superabsorbent hydrogel (SAH) as a soil amendment for drought management: a review. Soil Tillage Res. 204, 104736 (2020).

    [119] V. Guliyev, B. Tanunchai, M. Noll, F. Buscot, W. Purahong et al., Links among microbial communities, soil properties and functions: are fungi the sole players in decomposition of bio-based and biodegradable plastic? Polymers 14, 2801 (2022).

    [120] O.Y.A. Costa, J.M. Raaijmakers, E.E. Kuramae, Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front. Microbiol. 9, 1636 (2018).

    [121] A.L. Ramachandran, A. Mukherjee, N.K. Dhami, Nanoscale to macroscale characterization of in-situ bacterial biopolymers for applications in soil stabilization. Front. Mater. 8, 681850 (2022).

    [122] A. Tran, I. Chang, G.-C. Cho, Soil water retention and vegetation survivability improvement using microbial biopolymers in drylands. Geomech. Eng. 17, 475–483 (2019).

    [123] S. Antony, T.R. Anju, B. Thomas, Nature-inspired biomimetic polymeric materials and their applications. ed. by (Springer; 2022), pp. 1–31.

    [124] S. Dutta, S. Pal, P. Panwar, R.K. Sharma, P.L. Bhutia, Biopolymeric nanocarriers for nutrient delivery and crop biofortification. ACS Omega 7, 25909–25920 (2022).

    [125] S. Fertahi, M. Ilsouk, Y. Zeroual, A. Oukarroum, A. Barakat, Recent trends in organic coating based on biopolymers and biomass for controlled and slow release fertilizers. J. Control. Release 330, 341–361 (2021).

    [126] Y. Oladosu, M.Y. Rafii, F. Arolu, S.C. Chukwu, M.A. Salisu et al., Superabsorbent polymer hydrogels for sustainable agriculture: a review. Horticulturae 8(7), 605 (2022).

    [127] L. Yang, Y. Yang, Z. Chen, C. Guo, S. Li, Influence of super absorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco-engineering. Ecol. Eng. 62, 27–32 (2014).

    [128] G. Fang, X. Yang, S. Chen, Q. Wang, A. Zhang et al., Cyclodextrin-based host–guest supramolecular hydrogels for local drug delivery. Coord. Chem. Rev. 454, 214352 (2022).

    [129] J. Jing, S. Liang, Y. Yan, X. Tian, X. Li, Fabrication of hybrid hydrogels from silk fibroin and tannic acid with enhanced gelation and antibacterial activities. ACS Biomater. Sci. Eng. 5, 4601–4611 (2019).

    [130] A.F. Rachid, B.R. Bader, H.H. Al-Alawy, Effect of foliar application of humic acid and nanocalcium on some growth, production, and photosynthetic pigments of cauliflower (Brassicaoleracea var. Botrytis) planted in calcareous soil. Plant Arch. 20(1), 32–37 (2020)

    [131] G. Korbecka-Glinka, K. Piekarska, M. Wiśniewska-Wrona, The use of carbohydrate biopolymers in plant protection against pathogenic fungi. Polymers 14, 2854 (2022).

    [132] M. Stasińska-Jakubas, B. Hawrylak-Nowak, Protective, biostimulating, and eliciting effects of chitosan and its derivatives on crop plants. Molecules 27, 2801 (2022).

    [133] A.M. Ram, R. Singh, M. Rana, S.A. Dwivedi, K. Parmar et al., Nanobiotechnology: synthesis components and a few approaches for controlling plant diseases. Plant Nano Biol. 4, 100038 (2023).

    [134] S.-H. Jin, T.-E. Kwon, J.-U. Kang, S.-H. Yoo, P.-S. Chang et al., Production of branched glucan polymer by a novel thermostable branching enzyme of Bifidobacterium thermophilum via one-pot biosynthesis containing a dual enzyme system. Carbohydr. Polym. 309, 120646 (2023).

    [135] G. Teng, C. Chen, N. Jing, C. Chen, J. Zhang, Halloysite nanotubes-based composite material with acid/alkali dual pH response and foliar adhesion for smart delivery of hydrophobic pesticide. Chem. Eng. J. 451, 139052 (2022).

    [136] Z. Zhou, Y. Gao, G. Tang, Y. Tian, Y. Li et al., Facile preparation of ph/pectinase responsive microcapsules based on CaCO3 using fungicidal ionic liquid as a nucleating agent for sustainable plant disease management. Chem. Eng. J. 446, 137073 (2022).

    [137] R. Patel, B. Mitra, M. Vinchurkar, A. Adami, R. Patkar et al., Plant pathogenicity and associated/related detection systems. A review. Talanta 251, 123808 (2023).

    [138] M. Khater, A. de la Escosura-Muñiz, A. Merkoçi, Biosensors for plant pathogen detection. Biosens. Bioelectron. 93, 72–86 (2017).

    [139] J. Tavakoli, Y. Tang, Hydrogel based sensors for biomedical applications: an updated review. Polymers 9, 364 (2017).

    [140] P.D. Skottrup, M. Nicolaisen, A.F. Justesen, Towards on-site pathogen detection using antibody-based sensors. Biosens. Bioelectron. 24, 339–348 (2008).

    [141] K. Yamaguchi, Y. Uriu, K. Kageyama, M. Shimizu, Development of a biosensor for selective detection of phytopathogenic pythiums, in 2017 IEEE 7th International conference nanomaterials: application & properties (NAP). Odessa, UKraine. IEEE, (2017)., 4NB03–1–04NB03–3.

    [142] M. Regiart, M. Rinaldi-Tosi, P.R. Aranda, F.A. Bertolino, J. Villarroel-Rocha et al., Development of a nanostructured immunosensor for early and in situ detection of Xanthomonas arboricola in agricultural food production. Talanta 175, 535–541 (2017).

    [143] T. Vo-Dinh, Nanobiosensors: probing the sanctuary of individual living cells. J. Cell. Biochem. 87, 154–161 (2002).

    [144] G. Ertürk, B. Mattiasson, Molecular imprinting techniques used for the preparation of biosensors. Sensors 17, 288 (2017).

    [145] E. Jabbari, J. Tavakoli, A.S. Sarvestani, Swelling characteristics of acrylic acid polyelectrolyte hydrogel in a dc electric field. Smart Mater. Struct. 16, 1614–1620 (2007).

    [146] M. Cretich, G. Pirri, F. Damin, I. Solinas, M. Chiari, A new polymeric coating for protein microarrays. Anal. Biochem. 332, 67–74 (2004).

    [147] N. Dehbari, J. Tavakoli, J. Zhao, Y. Tang, In situ formed internal water channels improving water swelling and mechanical properties of water swellable rubber composites. J. Appl. Polym. Sci. 134, 44548 (2017).

    [148] M.A.C. Mhd Haniffa, Y.C. Ching, L.C. Abdullah, S.C. Poh, C.H. Chuah, Review of bionanocomposite coating films and their applications. Polymers 8, 246 (2016).

    [149] S. Sharma, B. Sharma, P. Jain, Graphene based biopolymer nanocomposites in sensors. B. Sharma, P. Jain, (eds.) Graphene Based Biopolymer Nanocomposites. Singapore: Springer Singapore, (2020), 273–286.

    [150] S. Pradhan, A.K. Brooks, V.K. Yadavalli, Nature-derived materials for the fabrication of functional biodevices. Mater. Today Bio 7, 100065 (2020).

    [151] M. Hassanisaadi, A.H.S. Bonjar, A. Rahdar, R.S. Varma, N. Ajalli et al., Eco-friendly biosynthesis of silver nanoparticles using Aloysia citrodora leaf extract and evaluations of their bioactivities. Mater. Today Commun. 33, 104183 (2022).

    [152] S. Zhang, Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21, 1171–1178 (2003).

    [153] A. Campanella, D. Döhler, W.H. Binder, Self-healing in supramolecular polymers. Macromol. Rapid Commun. 39, 1700739 (2018).

    Roohallah Saberi Riseh, Mohadeseh Hassanisaadi, Masoumeh Vatankhah, Rajender S. Varma, Vijay Kumar Thakur. Nano/Micro-Structural Supramolecular Biopolymers: Innovative Networks with the Boundless Potential in Sustainable Agriculture[J]. Nano-Micro Letters, 2024, 16(1): 147
    Download Citation