• Opto-Electronic Engineering
  • Vol. 51, Issue 2, 230134 (2024)
Jingui Wu1、2、3, Xiaoyong Wang1, Shaojun Bai1, Kailan Wu1、3, Zhongkai Guo1, Yongchao Zheng1, Yun Wang1, and Xuling Lin1、3、*
Author Affiliations
  • 1Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China
  • 2School of Mathematical Science, Capital Normal University, Beijing 100048, China
  • 3School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, China
  • show less
    DOI: 10.12086/oee.2024.230134 Cite this Article
    Jingui Wu, Xiaoyong Wang, Shaojun Bai, Kailan Wu, Zhongkai Guo, Yongchao Zheng, Yun Wang, Xuling Lin. Comparative study of detection modes for space-based gravitational wave observation[J]. Opto-Electronic Engineering, 2024, 51(2): 230134 Copy Citation Text show less
    References

    [1] Sanz I Escudero, A Heske, J C Livas. A telescope for LISA-the laser interferometer space antenna. Adv Opt Technol, 7, 395-400(2018).

    [2] M Sallusti, P Gath, D Weise et al. LISA system design highlights. Class Quantum Grav, 26, 094015(2009).

    [3] O Jennrich. LISA technology and instrumentation. Class Quantum Grav, 26, 153001(2009).

    [4] D R Weise, P Marenaci, P Weimer et al. Alternative opto-mechanical architectures for the LISA instrument. J Phys Conf Ser, 154, 012029(2009).

    [5] C Brugger, B Broll, E Fitzsimons et al. An experiment to test in-field pointing for Elisa. Proc SPIE, 10563, 105634D(2017).

    [6] G Witovet, J Human. Realization and performance validation of the in-field pointing mechanism for the evolved laser interferometer space antenna(2015).

    [7] J Livas, S Sankar, G West et al. eLISA telescope in-field pointing and scattered light study. J Phys Conf Ser, 840, 012015(2017).

    [8] W Brzozowski, D Robertson, E Fitzsimons et al. The LISA optical bench: an overview and engineering challenges. Proc SPIE, 12180, 121800O(2022).

    [9] L d’Arcio, J Bogenstahl, C Diekmann et al. An elegant breadboard of the optical bench for eLISA/NGO. Proc SPIE, 10564, 105640I(2017).

    [10] R Fleddermann. Interferometry for a space-based gravitational wave observatory: reciprocity of an optical fiber(2012).

    [11] R Fleddermann, C Diekmann, F Steier et al. Sub-pm Hz−1 non-reciprocal noise in the LISA backlink fiber. Class Quantum Grav, 35, 075007(2018).

    [12] R Fleddermann, F Steier, M Tröbs et al. Measurement of the non-reciprocal phase noise of a polarization maintaining single-mode optical fiber. J Phys Conf Ser, 154, 012022(2009).

    [13] F Steier, R Fleddermann, J Bogenstahl et al. Construction of the LISA back-side fibre link interferometer prototype. Class Quantum Grav, 26, 175016(2009).

    [14] X Y Wang, S J Bai, Q Zhang et al. Research progress of telescopes for space-based gravitational wave missions. Opto-Electron Eng, 50, 230219(2023).

    [15] M Chwalla, K Danzmann, Álvarez M Dovale et al. Optical suppression of tilt-to-length coupling in the LISA long-arm interferometer. Phys Rev Appl, 14, 014030(2020).

    [16] M Chwalla, K Danzmann, Barranco G Fernández et al. Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling. Class Quantum Grav, 33, 245015(2016).

    [17] W P Robins. Phase Noise in Signal Sources(1982).

    [18] Delgado J J Esteban. Laser ranging and data communcation for the laser interferometer space antenna(2012).

    [19] S Barke. Inter-spacecraft frequency distribution for future gravitational wave observatories(2015).

    [20] L Wissel, A Wittchen, T S Schwarze et al. Relative-intensity-noise coupling in heterodyne interferometers. Phys Rev Appl, 17, 024025(2022).

    [21] J C Livas, P Arsenovic, J A Crow et al. Telescopes for space-based gravitational wave missions. Opt Eng, 52, 091811(2013).

    [22] J Livas, S Sankar. Optical telescope design study results. J Phys Conf Ser, 610, 012029(2015).

    [23] J C Livas, S R Sankar. Optical telescope system-level design considerations for a space-based gravitational wave mission. Proc SPIE, 9904, 99041K(2016).

    [24] S R Sankar, J C Livas. Optical telescope design for a space-based gravitational-wave mission. Proc SPIE, 9143, 914314(2014).

    [25] A Spector, G Mueller. Back-reflection from a Cassegrain telescope for space-based interferometric gravitational-wave detectors. Class Quantum Grav, 29, 205005(2012).

    Jingui Wu, Xiaoyong Wang, Shaojun Bai, Kailan Wu, Zhongkai Guo, Yongchao Zheng, Yun Wang, Xuling Lin. Comparative study of detection modes for space-based gravitational wave observation[J]. Opto-Electronic Engineering, 2024, 51(2): 230134
    Download Citation