• Matter and Radiation at Extremes
  • Vol. 9, Issue 2, 027601 (2024)
Chaoxin Chen1, Tao Gong1, Zhichao Li1, Liang Hao2, Yonggang Liu1, Xiangming Liu1, Hang Zhao1, Yaoyuan Liu1, Kaiqiang Pan1, Qi Li1, Sanwei Li1, Zhijun Li1, Sai Jin1, Feng Wang1, and Dong Yang1
Author Affiliations
  • 1Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 621900, People’s Republic of China
  • 2Institute of Applied Physics and Computational Mathematics, Beijing 100094, People’s Republic of China
  • show less
    DOI: 10.1063/5.0173023 Cite this Article
    Chaoxin Chen, Tao Gong, Zhichao Li, Liang Hao, Yonggang Liu, Xiangming Liu, Hang Zhao, Yaoyuan Liu, Kaiqiang Pan, Qi Li, Sanwei Li, Zhijun Li, Sai Jin, Feng Wang, Dong Yang. Study of the spatial growth of stimulated Brillouin scattering in a gas-filled hohlraum via detecting the driven ion acoustic wave[J]. Matter and Radiation at Extremes, 2024, 9(2): 027601 Copy Citation Text show less
    References

    [1] R. L.Berger, O. L.Landen, R. L.Kauffman, L. J.Suter, S. H.Glenzer, P.Amendt, J. D.Lindl, S. W.Haan, S. G.Glendinning. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 11, 339-491(2004).

    [2] W.Kruer. The Physics of Laser Plasma Interactions(2019).

    [3] O.Landen, R.Berger, D.Strozzi, N.Meezan, M.Biener, J.Ralph, A.Kemp, N.Lemos, B.MacGowan, M.Belyaevet?al.. The effects of multispecies hohlraum walls on stimulated brillouin scattering, hohlraum dynamics, and beam propagation. Phys. Plasmas, 28, 072704(2021).

    [4] J.Moody, M.Hohenberger, G.Hall, P.Michel, J.Ralph, D.Strozzi, O.Landen, A.Moore, O.Jones, D.Turnbullet?al.. The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility. Phys. Plasmas, 24, 052706(2017).

    [5] K.Baker, M.Hohenberger, N.Lemos, J.Park, C. A.Thomas, S.Khan, C.Goyon, D.Casey, R.Berger, J.Milovichet?al.. Stimulated backscatter of laser light from BigFoot hohlraums on the National Ignition Facility. Phys. Plasmas, 26, 012709(2019).

    [6] T.Chapman, P.Michel, M.Spaeth, R.Berger, M.Belyaev, P.Whitman, B. J.MacGowan, K.Manes, J.Moody, C.Thomas, J.-M.Di Nicola. Investigation and modeling of optics damage in high-power laser systems caused by light backscattered in plasma at the target. J. Appl. Phys., 125, 033101(2019).

    [7] R.Aden, H.Abu-Shawareb, P.Adams, B.Addis, M.Aggleton, R.Acree, P.Adrian, L.Aghaian, B.Afeyan, J.Adamset?al.. Lawson criterion for ignition exceeded in an inertial fusion experiment. Phys. Rev. Lett., 129, 075001(2022).

    [8] A.Zylstra, K.Baker, J.Ralph, A.Pak, D.Callahan, C.Weber, B.Bachmann, O.Hurricane, D.Casey, A.Kritcheret?al.. Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E. Phys. Plasmas, 28, 072706(2021).

    [9] M.Edwards, S.Haan, J.Lindl, D.Callahan, L.Atherton, B.Hammel, S.Glenzer, D.Clark, R.Cook, J.Salmonsonet?al.. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys. Plasmas, 18, 051001(2011).

    [10] S.Glenzer, J.Kilkenny, L.Atherton, M.Edwards, P.Patel, J.Lindl, E.Moses, S.Haan, O.Landen, A.Nikrooet?al.. Progress towards ignition on the National Ignition Facility. Phys. Plasmas, 20, 070501(2013).

    [11] T.D?ppner, T.Ma, J.Milovich, O.Hurricane, D.Hinkel, L.Berzak Hopkins, E.Dewald, D.Callahan, T.Dittrich, S.Le Papeet?al.. Design of a high-foot high-adiabat ICF capsule for the National Ignition Facility. Phys. Rev. Lett., 112, 055002(2014).

    [12] P.Michel, J.Kline, E.Dewald, L.Divol, R.Kirkwood, E.Williams, J.Moody, D.Hinkel, R.Berger, S.Glenzeret?al.. A review of laser–plasma interaction physics of indirect-drive fusion. Plasma Phys. Controlled Fusion, 55, 103001(2013).

    [13] R.Kirkwood, E.Williams, S.Glenzer, P.Young, J.Moody, L.Divol, R.Berger, C.Geddes. Thomson scattering measurements of saturated ion waves in laser fusion plasmas. Phys. Rev. Lett., 86, 2565(2001).

    [14] S.Laffite, P.Gauthier, V.Tassin, S.Depierreux, P.Masson-Laborde, F.Philippe, C.Neuville, A.Casner, M.Monteil, B.Villetteet?al.. Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums. Phys. Plasmas, 23, 022703(2016).

    [15] N.Meezan, D.Callahan, E.Dewald, D.Hinkel, S.Dixit, C.Haynam, E.Dzenitis, M.Edwards, O.Jones, L.Athertonet?al.. National Ignition Campaign Hohlraum energetics. Phys. Plasmas, 17, 056304(2010).

    [16] D.Yang, S.Zou, T.Gong, S.Li, X.Li, L.Guo, L.Hao, Y.Liu, Z.Li, X.Jianget?al.. Recent research progress of laser plasma interactions in Shenguang laser facilities. Matter Radiat. Extremes, 4, 055202(2019).

    [17] R.London, D.Hinkel, D.Froula, D.Callahan, D.Strozzi, E.Williams. Ray-based calculations of backscatter in laser fusion targets. Phys. Plasmas, 15, 102703(2008).

    [18] X.Hu, S.Zou, Z.Li, D.Yang, Y.Zhao, X.Peng, F.Wang, L.Hao, C.Zheng, Z.Liuet?al.. Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SG-III prototype facility with a spectral analysis code. Phys. Plasmas, 21, 072705(2014).

    [19] T.Gong, B.Zhao, G.-y.Hu, Z.Li, J.Zheng. Noise sources and competition between stimulated Brillouin and Raman scattering: A one-dimensional steady-state approach. Phys. Plasmas, 20, 092702(2013).

    [20] J.Zheng, T.Gong, B.Zhao, Y.Ding, G.Hu, Z.Li, D.Yang. Mitigating stimulated scattering processes in gas-filled hohlraums via external magnetic fields. Phys. Plasmas, 22, 092706(2015).

    [21] S.Li, Z.Liu, T.Xu, D.Yang, X.Li, H.Cai, L.Hao, Z.Li, Y.Liu, P.Guet?al.. Investigation on laser plasma instability of the outer ring beams on SGIII laser facility. AIP Adv., 9, 095201(2019).

    [22] D. H.Froula. Plasma Scattering of Electromagnetic Radiation, 8(2011).

    [23] S.Glenzer, D.Froula, L.Divol. Measurements of nonlinear growth of ion-acoustic waves in two-ion-species plasmas with Thomson scattering. Phys. Rev. Lett., 88, 105003(2002).

    [24] G.Gregori, D.Froula, L.Divol, A.MacKinnon, S.Glenzer. Direct observation of stimulated-Brillouin-scattering detuning by a velocity gradient. Phys. Rev. Lett., 90, 155003(2003).

    [25] H.Bandulet, S.Depierreux, C.Labaune, K.Lewis. Thomson-scattering study of the subharmonic decay of ion-acoustic waves driven by the Brillouin instability. Phys. Rev. Lett., 93, 035002(2004).

    [26] C.Chen, Z.Li, Z.Li, X.Jiang, T.Gong, Y.Liu, H.Zhao, R.Zhao, D.Yang, S.Jinet?al.. Implementation of a large-aperture Thomson scattering system for diagnosing driven ion acoustic waves on Shenguang-III prototype laser facility. J. Instrum., 17, P05017(2022).

    [27] J.-F.Gu, P.Song, X.-D.Hang, H.Yong, C.-L.Zhai, P.-J.Gu, D.-G.Kang, S.Jiang. Numerical simulation of 2-D radiation-drive ignition implosion process. Commun. Theor. Phys., 59, 737(2013).

    [28] X.Li, S.Li, Y.Liu, Y.Chen, H.Zhao, T.Gong, D.Yang, Z.Li, L.Guo, X.Jianget?al.. Progress in optical Thomson scattering diagnostics for ICF gas-filled hohlraums. Matter Radiat. Extremes, 4, 055201(2019).

    [29] A. A.Galeev, F. L.Hinton, A.Galeev A., R. N.Sudan. Collisional transport in plasma. Handbook of Plasma Physics, 158(1983).

    [30] J.Zheng, C.Yu, Z.Zheng. The dynamic form factor for ion-collisional plasmas. Phys. Plasmas, 6, 435-443(1999).

    [31] C. S.Liu, P. K.Kaw, G.Schmid, M. N.Rosenbluth, J. F.Drake, Y.-C.Lee. Parametric instabilities of electromagnetic waves in plasmas. Phys. Fluids, 17, 778-785(1974).

    [32] D.Braun, S.Glenzer, H.Baldis, D.Montgomery, E.Williams, L.Divol, B.Cohen, G.Gregori, A.Mackinnon, R. P.Johnson, D.Froula. Stimulated Brillouin scattering in the saturated regime. Phys. Plasmas, 10, 1846-1853(2003).

    [33] C.Tang. Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process. J. Appl. Phys., 37, 2945-2955(1966).

    [34] K.McMillen, N.Shaffer, M.Sherlock, D.Strozzi, R.Follett, L.Divol, J.Katz, A.Cola?tis, D.Turnbull, D.Edgellet?al.. Inverse bremsstrahlung absorption. Phys. Rev. Lett., 130, 145103(2023).

    [35] E. L.Vold, A. N.Simakov, K.Molvig. Classical transport equations for burning gas-metal plasmas. Phys. Plasmas, 21, 092709(2014).

    [36] T.Ao, C.Niemann, L.Divol, A.Offenberger, D.Froula, C.Smith, D.Price, G.Gregori, N.Meezan, S.Glenzer. Direct observation of the saturation of stimulated Brillouin scattering by ion-trapping-induced frequency shifts. Phys. Rev. Lett., 93, 035001(2004).

    Chaoxin Chen, Tao Gong, Zhichao Li, Liang Hao, Yonggang Liu, Xiangming Liu, Hang Zhao, Yaoyuan Liu, Kaiqiang Pan, Qi Li, Sanwei Li, Zhijun Li, Sai Jin, Feng Wang, Dong Yang. Study of the spatial growth of stimulated Brillouin scattering in a gas-filled hohlraum via detecting the driven ion acoustic wave[J]. Matter and Radiation at Extremes, 2024, 9(2): 027601
    Download Citation