• Photonics Research
  • Vol. 7, Issue 12, 1493 (2019)
Mi He1, Yequan Chen2, Lipeng Zhu3, Huan Wang1, Xuefeng Wang2、4、*, Xinlong Xu1, and Zhanyu Ren1、5、*
Author Affiliations
  • 1Shaanxi Joint Laboratory of Graphene, State Key Laboratory Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069, China
  • 2National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
  • 3School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
  • 4e-mail: xfwang@nju.edu.cn
  • 5e-mail: rzy@nwu.edu.cn
  • show less
    DOI: 10.1364/PRJ.7.001493 Cite this Article Set citation alerts
    Mi He, Yequan Chen, Lipeng Zhu, Huan Wang, Xuefeng Wang, Xinlong Xu, Zhanyu Ren, "Third-order nonlinear optical properties of WTe2 films synthesized by pulsed laser deposition," Photonics Res. 7, 1493 (2019) Copy Citation Text show less

    Abstract

    The prominent third-order nonlinear optical properties of WTe2 films are studied through the Z-scan technique using a femtosecond pulsed laser at 1030 nm. Open-aperture (OA) and closed-aperture (CA) Z-scan measurements are performed at different intensities to investigate the nonlinear absorption and refraction properties of WTe2 films. OA Z-scan results show that WTe2 films always hold a saturable absorption characteristic without transition to reverse saturable absorption. Further, a large nonlinear absorption coefficient β is determined to be 3.37×103 cm/GW by fitting the OA Z-scan curve at the peak intensity of 15.603 GW/cm2. In addition, through the slow saturation absorption model, the ground state absorption cross section, excited state absorption cross section, and absorber’s density were found to be 1.4938×10 16 cm2, 1.2536×10 16 cm2, and 6.2396×1020 cm 3, respectively. CA Z-scan results exhibit a classic peak–valley shape of the CA Z-scan signal, which reveals a self-defocusing optical effect of WTe2 films under the measured environment. Furthermore, a considerable nonlinear refractive index value n2 can be obtained at 1.629×10 2 cm2/GW. Ultimately, the values of the real and imaginary parts of the third-order nonlinear s

    1. INTRODUCTION

    Optical materials that possess large third-order nonlinear optical coefficients χ(3) have great potential in nonlinear optical devices such as saturable absorbers [1], optical switches [2], optical limiters [3], and wavelength converters [4]. The widely studied optical materials include organic materials [5], inorganic semiconductor materials [6], chalcogenide glasses [7], and other inorganic materials [8]. With the increasing demand for optical information processing, more novel materials are in great demand to achieve higher performance and easier integration. Recently, two-dimensional (2D) materials with atomic thickness have attracted widespread attention thanks to their large optical nonlinearity and fast broadband response [9,10]. Furthermore, these 2D materials are easily integrated and have excellent mechanical [11], chemical [12], and optical properties [13,14], which make them superb photoelectric materials.

    Among the most promising 2D materials, the family of layered transition metal dichalcogenides with the general formula MX2 (where M is a transition metal element and X is chalcogen) have potential for a wide variety of optoelectronic applications. In recent years, MX2 materials have been intensely studied; it has been found that they possess significant ultrafast nonlinear optical properties, which suggest great potential for the development of nanophotonic devices such as mode-lockers, optical switches, ultrashort pulse generation, optical limiting, and all-optical logic gates [1518]. In addition to their large third-order nonlinearity, MX2 materials have unique energy gaps [19,20] which can be tunable depending on the component, structure, and number of layers [21,22]. Therefore, it is possible for MX2 materials to work at a wider variety of light wavelengths than other 2D materials.

    Recently, WTe2 has attracted considerable attention due to its large unsaturated positive magnetoresistance [23]. A great deal of work around WTe2 has been done to understand its band structure and magnetic properties [24,25]. Detailed Raman spectra have revealed a relationship between vibrational mode and crystal structures [2629]. Photoconductivity [30], strong spin-orbit coupling [31], and tunable bandgap [32] make WTe2 very promising in photonic devices. The nonlinear optical properties of the MoTe2/WTe2 nanosheets created by a liquid exfoliation method was investigated by a balanced twin-detector measurement scheme. To our knowledge, this is the first demonstration that MoTe2/WTe2 nanosheets exhibit saturable absorption properties [33]. Bulk-like WTe2 microflakes served as the base material for an alternative near-infrared saturable absorber to generate femtosecond mode-locked pulses from a 1.55 μm fiber laser [34]. A mode-locked thulium fiber laser using a WTe2 absorber was demonstrated [35]. However, third-order nonlinear processes, especially third-order refractive index, have remained largely unexplored, which may significantly limit the applications of WTe2 in optical devices.

    In this work, the third-order nonlinear optical processes of WTe2 films fabricated by pulsed laser deposition (PLD) are obtained by the Z-scan technique with a femtosecond pulse laser at 1030 nm. The open-aperture (OA) Z-scan measurement results show that WTe2 exhibits saturable absorption. The closed-aperture (CA) Z-scan signals reveal that the WTe2 films exhibit a self-defocusing optical effect. Combining these results with first-principles calculations, the third-order nonlinear susceptibility of WTe2 is estimated.

    2. EXPERIMENT

    A. Fabrication of WTe2 Thin Films

    WTe2 films were fabricated by PLD technique and post-annealing. The detailed process is reported elsewhere [36]. Briefly, tungsten and tellurium are mixed at a stoichiometric ratio of 1:2 to compound precursor WTe2 powder by heating to 700°C for a week; this was carried out in a vacuum quartz tube drained by a turbo molecular pump. The fully reactive precursor is pressed and sintered at 700°C in a sealed pipe. The mica substrate (1  cm×1  cm) was cleaned. The mica substrate and WTe2 target were positioned in the PLD reaction cavity (vacuum to 4×107  mbar). The films were then fabricated with the help of a 248 nm KrF excimer laser beam at 1.5  mJ/cm2 average fluence and 1 Hz repetition rate. Finally, the films and tellurium powder were placed in a quartz tube at 700°C for 48 h to obtain good crystalline films.

    B. Characterization of WTe2 Thin Film

    X-ray photoelectron spectrum (XPS, VGESCA Lab220I-XL) was employed to study the surface chemical states of the WTe2 thin film. The Raman spectrum of the WTe2 thin film was characterized by Raman spectroscopy (Laboratory Ram HR800, excitation wavelength at 532 nm). The thickness and morphology of the WTe2 thin film are measured by atomic force microscopy (AFM, Dimension Icon Bruker AXS Inc.). The optical absorption properties of the WTe2 thin film are studied intensively by linear absorption spectrum (R1, IdeaOptics, China) in wavelength range from 400 to 1100 nm.

    C. Z-Scan Experimental Setup

    The Z-scan system setup was utilized to study the nonlinear response processes of the WTe2 sample, as shown in Fig. 1. The nonlinear absorption and refraction process of the WTe2 thin films were explored through OA and CA Z-scan systems, respectively. The OA Z-scan measurements acquired the relationship between transmittance and sample location z, while the sample slowly passed through the focal point of the focusing lens along the direction of laser propagation. The closed aperture relationship can be gained by putting an aperture after the sample. The configuration of the Z-scan optical path parameters was the same as in the previous report [37]. All measurements were carried out with a mode-locked fiber laser at 1030 nm; its pulse width and repetition rate were 340 fs and 100 Hz, respectively. The focal length of the focusing lens was 15 cm. The beam waist radius was about 30 μm at the focal point. The reference signals (for eliminating the influence of pulse laser energy fluctuation) and open and closed aperture signals were detected by three Si amplified detectors.

    Optical path diagram of the Z-scan experiment.

    Figure 1.Optical path diagram of the Z-scan experiment.

    3. RESULTS AND DISCUSSION

    A. Characterization of WTe2 Thin Film

    The X-ray photoelectron spectrum (XPS) was measured to reveal the surface chemical states of the WTe2 thin film, as shown in Fig. 2(a). Four typical peaks at 31.4, 33.5, 35.4, and 37.5 eV are from the W element originating from W 4f (7/2) (metal), W 4f (5/2) (metal), W 4f (7/2) (WO3), and W 4f (5/2) (WO3) [3841], while the pronounced peaks at 572.6 and 576.4 eV are attributed to Te 3d (5/2) (metal) and Te 3d(5/2) (TeO2), respectively [42,43]. The existence of the oxidation state is ascribed to the oxidization since WTe2 is inclined to be oxidized in the ambient environment [44].

    Characterization of thin WTe2 film. (a) XPS. (b) Raman spectrum. (c) Atomic force microscopy (AFM) image. The step at the edge shows that the thickness of the film is typically ∼70 nm. (d) Absorption curve along with the reference mica substrate.

    Figure 2.Characterization of thin WTe2 film. (a) XPS. (b) Raman spectrum. (c) Atomic force microscopy (AFM) image. The step at the edge shows that the thickness of the film is typically 70  nm. (d) Absorption curve along with the reference mica substrate.

    Figure 2(b) shows Raman spectrum of WTe2 thin film. Six Raman spectral peaks located at 89.7, 111.0, 116.4, 134.1, 164.1, and 211.6  cm1 are attributed to the A25, A24, A19, A18, A15, and A12 phonon modes, respectively [26,45]. The existence of the A24 phonon mode indicates that the film is not a monolayer or few-layer WTe2, as confirmed by atomic force microscope image [see Fig. 2(c)] [26], where the thickness is determined to be 70  nm, corresponding to about 100 monolayers of WTe2.

    Optical absorption results of WTe2 are shown in Fig. 2(d), indicating that WTe2 absorbs light from a range of 400 to 1100 nm. Optical absorption reduced gradually with the increase of wavelength. Meanwhile, an obviously weaker constant absorption can be observed in the pure mica substrate in the entire test wavelength region, which rules out its contribution. The linear absorption coefficient is calculated by Lambert’s law, I=I0eαL, where I is the transmitted light intensity, I0 is the incident light intensity, and L is the film thickness. The value of transmittance (I/I0) and L are 0.5404 and 70 nm, respectively, at 1030 nm. Linear absorbtion coefficient is deduced to be 8.8×104  cm1.

    B. Nonlinear Absorption Properties of WTe2 Film

    For the sake of eliminating the influence of the mica substrate on the nonlinear absorption effect of WTe2, OA Z-scan measurement of the mica substrate is performed. As shown in Fig. 3(a), there is no obvious nonlinear absorption behavior in the mica substrate.

    OA Z-scan results of the WTe2 sample deposited on the mica substrate. (a) OA Z-scan result of the WTe2/mica and the mica substrate. (b) Normalized transmission as a function of the WTe2 sample position under different intensities at the focal point. (c) Saturation absorption fitting. (d) Electronic band structures of WTe2. (e) Simplified electronic band model of WTe2. (f) Slow saturation absorption fitting.

    Figure 3.OA Z-scan results of the WTe2 sample deposited on the mica substrate. (a) OA Z-scan result of the WTe2/mica and the mica substrate. (b) Normalized transmission as a function of the WTe2 sample position under different intensities at the focal point. (c) Saturation absorption fitting. (d) Electronic band structures of WTe2. (e) Simplified electronic band model of WTe2. (f) Slow saturation absorption fitting.

    In order to study the nonlinear absorption effect of different incident intensity, OA Z-scan measurements were performed at different light intensities. Figure 3(b) shows the typical OA Z-scan measuring curves for WTe2 thin films grown on mica substrates obtained at various light intensities. The normalized transmittance gradually increased as the sample got closer to the focal point, indicating that the absorption of WTe2 is gradually saturated with the increase of the incident light intensity. This is widely known as a saturable absorption behavior. Nonlinear absorption coefficient can be obtained by fitting the experiment data. For OA Z-scan, the normalized transmittance as a function of sample position z may be expressed as [46] T(z)=m=0(βI0Leff1+z2/z02)m(m+1)3/2,where β is the nonlinear absorption coefficient, I0 is incident intensity at focus point, Leff=1exp(α0L)α0 is the effective film thickness, α0 is the linear absorption coefficient, L is the sample length along the z axis, and z0=πω02/λ is the Rayleigh diffraction length. The fitting results are shown in Fig. 3(b). The fitting results of nonlinear absorption coefficient β, for WTe2 at 2.08, 5.201, 10.402, and 15.603  GW/cm2 were found to be 14.91×103, 7.89×103, 4.33×103 and 3.37×103  cm/GW, respectively.

    As shown in Fig. 3(b), the peaks of the OA Z-scan curves increase with the increasing input power intensity. From low power to high power or even damage threshold, the reverse saturable absorption effect was not observed. These results can be ascribed to smaller two-photon absorption coefficients of WTe2, which are not enough to overcome the ground state bleaching. In the measurement, we found that when the intensity was greater than 20.804  GW/cm2, the sample’s peak transmittance suddenly increased with increasing of light intensity, and the original saturation absorption curve could not reappear when the intensity decreased to the initial intensity. We guess the damage threshold of WTe2 to be about 20.804  GW/cm2 at 1030 nm.

    Based on the relationship between the laser beam spot size and Z position of the sample, the normalized transmittance under variable incident intensity can be derived. A nonlinear saturable absorption curve is calculated as shown in Fig. 3(c). OA Z-scan measurement result shows the power-dependent normalized transmittance. We fitted this curve with a normalized equation: T=[1α(I)L]/(1α0L),where T is the transmission and L is thickness of sample. α0 is saturation loss (also called modulation depth) and α(I) is the total absorption coefficient. For a process that combines saturable absorption and two-photon absorption, the total absorption coefficient can be written as α(I)=α01+I/IS+βI,where I is incident light intensity, α0 is saturation loss (also called modulation depth), IS is saturation light intensity, and β is two-photon absorption coefficient. β is determined to be 0 in this experiment via fitting the curve. The fitting results indicate that saturation intensity was around 20.29  GW/cm2 and the modulation depth was 14.87% at 1030 nm.

    It is necessary to analyze the electronic band structure in order to have a deeper understanding of the nonlinear absorption process of WTe2. The first-principles calculations were carried out using the VASP code [47] with the standard frozen-core projector augmented-wave (PAW) method. The cut-off energy for basis functions was 400 eV. The generalized gradient approximation of Perdew–Burke–Ernzerhof [48] was used for the exchange-correlation functional. A 4×4×1k-point grid was used for computing the next electronic structures and linear index of refraction mentioned later. The calculation result is shown in Fig. 3(d). A small overlap between the conduction and valence bands can be clearly observed at the Fermi energy, and TdWTe2 exhibits a classic semimetal behavior. According to the electronic structure, a simplified electronic band model can be found in Fig. 3(e). In this figure, the three-state energy diagram can be used for explaining the nonlinear absorption process of WTe2; here, A is ground state, T is the final state of the ground state absorption, E1 is first excited state, E2 is second excited state, σgs is ground state absorption cross section, σes is excited state absorption cross section, and RP represents a relaxation process. The photon absorption by WTe2 causes electrons to transform from A to T. After a relaxation process, the electrons in T easily jump to E1 because of the small overlap between the conduction and valence bands. Then, electrons in the E1 absorb photons and convert to the more active state E2. Based on this, the solutions of basic rate equations [49] can be employed for further analysis of the saturated absorption process. By comparing the relative values of the first excited state decay time τ and laser pulse duration, the solutions can be divided into two limiting cases. When the lifetime of first excited state is shorter than light pulse duration, a fast saturable absorber model is suited. A slow saturable absorber model is adaptive when the lifetime of the first excited state is longer compared to the light pulse duration. As for WTe2, the subpicosecond time scale of the relaxation process is greater than the light pulse duration (340  fs) in our experiment [49]. The result was fitted via the modified Frantz–Nodvik solution of a slow saturable absorber model: T(L)=T0+TFN(L)T01T0(TmaxT0),where T0=eNσgsL is the transmission at low pulse power, Tmax=eNσesL is the transmission achieved at high pulse power, N is the absorber density in WTe2 film, and σgs and σes are the ground state and excited state absorption cross sections, respectively. The TFN can be expressed as follows: TFN=ln{1+T0[eσgsE(0)1]}/σgsE(0),where E(0) is the incident light fluence in units of photons per unit area. By fitting the experimental data through a slow saturation absorption model, it can be observed that the fitting red line matches the data points well, as presented in Fig. 3(f). The values of σgs and σes of WTe2 film are determined to be 1.4938×1016  cm2 and 1.2536×1016  cm2. Up to now, this is the first time, to our knowledge, that the ground state and excited state absorption cross sections of WTe2 have been estimated. The ratio of the excited state to the ground state absorption cross section is obtained to be 0.84 at 1030 nm, which is consistent with the saturation absorption process in our experiments. The ratio of the ground state and excited state absorption cross section is less than 1 for the saturable absorber. The absorber’s density is deduced to be 6.2390×1020  cm3.

    C. Nonlinear Refractive Index of WTe2 Film

    The nonlinear refractive index can be extracted from the division of the CA measurement by the OA measurement. The typical CA Z-scan trace of WTe2 at the intensity of 15.603  GW/cm2 at the beam waist is shown in Fig. 4(a). The transition from peak to valley indicates that the nonlinear refractive index of WTe2 is negative. As for the CA Z-scan measurements, the relationship between normalized transmittance and sample location in the z axis can be described as follows [46,50]: T(z)=14ΔΦ0(z/z0)(z2/z02+1)(z2/z02+9),where ΔΦ0=kn2I0Leff is the on-axis nonlinear phase shift at the focus, k=2π/λ is the wavelength number, I0 is incident intensity at the focus point, Leff is the effective film thickness, α0 is the linear absorption coefficient, L is the sample length along the z axis, and z0 is the Rayleigh diffraction length. The fitting result of nonlinear refractive index n2 at 15.603  GW/cm2 was found to be 1.629×102  cm2/GW for WTe2.

    CA Z-scan results of the WTe2 sample deposited on mica substrate. (a) CA Z-scan result under 15.603 GW/cm2 incident peak power intensity. (b) Nonlinear refractive index and nonlinear phase shift as a function of excitation peak power intensity.

    Figure 4.CA Z-scan results of the WTe2 sample deposited on mica substrate. (a) CA Z-scan result under 15.603  GW/cm2 incident peak power intensity. (b) Nonlinear refractive index and nonlinear phase shift as a function of excitation peak power intensity.

    Generally, the high-order nonlinear phase shift can be expressed by the intensity-dependent refractive index: n=n0+n2I+n4I2+n6I3++n2nIn [51,52]. For the Z-scan theory, nonlinear phase shift ΔΦ=kn2I0Leff. An obvious linear relationship between nonlinear phase shift ΔΦ and effective nonlinear refractive index n2 usually suggests a pure third-order nonlinear effect. However, in our experiment, the change of nonlinear phase shift is not completely linear with the increase of incident light intensity, as shown in Fig. 4(b). This implies that high-order nonlinear processes take place in our experiments.

    That the nonlinear refractive index change depends on the light intensity can be attributed to the free-carrier nonlinearities and bound-electronic nonlinearities [5355]. We assume that both mechanisms are present in the measurement. When it comes a process that has a higher order nonlinear effect, the dependence of the change of refractive index on the intensity takes the form Δn=n2*I=n2I+σrN(t), where n2 is the third-order nonlinear refractive index and σrN(t) is the higher-order nonlinearity. In particular, σr and N(t) are the free carrier refractive index and photoexcited carrier density, respectively. The valid nonlinear refractive coefficient n2*=n2+σrN(t)/I. Thus, the nonlinear refractive index change with incident light intensity increase can be understood in our experiment.

    D. Third-Order Nonlinear Susceptibility Estimation of WTe2 Film

    The real and imaginary parts of the third-order nonlinear susceptibility of the WTe2 sample can be deduced through the following formulas [56]: Imχ(3)(esu)=c2n02β(m/W)/240π2ω,Reχ(3)(esu)=cn02n2(m2/W)/120π2,where c is the velocity of light, n0 is linear refractive index, and ω is the angular frequency of the excited light. Parameters other than linear refractive index have been acquired from experimental results. In order to have a basic knowledge of the magnitude of the third-order nonlinear optical susceptibility of WTe2, a theoretical calculation of linear refractive index is carried out via density functional theory. The details of the first-principles calculation are the same as the configuration of the band structure calculation mentioned earlier in this work. First, the theoretical dielectric function is computed through first-principles calculation. Then, the following equation is utilized to gain linear refractive index [57]: n(ω)=12[ϵ1(ω)2+ϵ2(ω)2+ϵ1(ω)]1/2. The complete result is represented in Fig. 5(a). In order to show the results more clearly, the local theoretical results of the linear refractive index are exhibited in Fig. 5(b). Linear refractive index n0 is seen to be about 3.7910 at 1030 nm in Fig. 5(b).

    First-principles calculation of linear refractive index of WTe2. (a) Linear refractive index. (b) Local image of refractive index.

    Figure 5.First-principles calculation of linear refractive index of WTe2. (a) Linear refractive index. (b) Local image of refractive index.

    The values of Imχ(3) and Reχ(3) were calculated to be 1.01×108 and 5.93×109esu. Figure of merit (FOM) for third-order nonlinear absorption is defined as FOM=|Imχ(3)/α0| [19], where linear absorption coefficient α08.8×104  cm1 can be gained from the linear absorption spectrum of the WTe2 sample. FOM for the WTe2 sample can be calculated as 1.143×1013  esu·cm. The comparison of third-order nonlinear properties between WTe2 and the other two-dimensional materials is summarized in Table 1, which includes the nonlinear absorption coefficient, the imaginary part of third-order nonlinear susceptibility, nonlinear refractive coefficient, the real part of third-order nonlinear susceptibility, and FOM. Compared to other materials, WTe2 exhibits the real part of third-order nonlinear susceptibility two orders of magnitude greater than MoTe2 and graphene. Meanwhile, the imaginary part of third-order nonlinear susceptibility is three orders of magnitude larger than that of MoS2 and WS2. These calculation results imply that WTe2 has a great potential applications in high-performance optical switching, mode-locking, Q-switching, and optoelectronic devices.

    Sampleβ(cm/GW)n2(cm2/GW)Reχ(3)(esu)Imχ(3)(esu)FOM(esu·cm)Refs.
    WTe23.37×1031.629×1025.93×1091.01×1081.143×1013This work
    MoS2−3.81.88×1038.71×10101.5×1011[56]
    WS2−5.15.83×1022.31×1081.75×1011[56]
    MoTe27.50×1030.160×1030.92×10115.50×10156.38×1015[58]
    Graphene9.4×10213.7×10378.2×10116.9×10144.03×1015[58]

    Table 1. Comparison of Third-Order Nonlinear Coefficients between WTe2 and Other Two-Dimensional Materials

    4. CONCLUSION

    In conclusion, the third-order nonlinear optical response of WTe2 film synthesized by PLD has been researched via the OA and CA Z-scan technique with a 1030 nm femtosecond pulse laser. The nonlinear absorption properties of WTe2 film are investigated at diverse incident light intensities. The results of OA Z-scan measurements show that WTe2 has a saturable absorption under measurement conditions. The nonlinear absorption coefficient, saturation intensity, and modulation depth were calculated as 3.37×103  cm/GW, 20.29  GW/cm2, and 14.87%, respectively. By further analyzing the nonlinear absorption processes, the ground and excited state absorption cross sections and the absorber’s density were found to be 1.4938×1016cm2, 1.2536×1016cm2, and 6.2396×1020  cm3, respectively. The nonlinear refractive index n2 was fitted to be 1.629×102  cm2/GW. It is discovered that the measured value of the nonlinear refractive index n2 decreases with increasing input power in the experiments, which is caused by higher-order nonlinear effect due to free carrier and bound-electronic nonlinearities. By means of first-principles calculation, the real and imaginary parts of third-order nonlinear coefficients Reχ(3) and Imχ(3) of WTe2 film were calculated to be 5.93×109 and 1.01×108  esu. The significant third-order nonlinearity manifest in WTe2 has great potential in applications such as high-performance optical switching, mode-locking, Q-switching, and optoelectronic devices.

    Acknowledgment

    Acknowledgment. X.W. is supported by the National Natural Science Foundation of China. The authors thank Ningning Dong and Jun Wang for providing the Z-scan measurements.

    References

    [1] E. Arimondo, F. Casagrande, L. A. Lugiato, P. Glorieux. Repetitive passive Q-switching and bistability in lasers with saturable absorbers. Appl. Phys. B, 30, 57-77(1983).

    [2] Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, X. C. Zhang. Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.5  μm. Appl. Phys. Lett., 81, 975-977(2002).

    [3] L. G. Deng, H. K. Liu. Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films. Opt. Eng., 42, 2936-2941(2003).

    [4] K. Inoue, H. Toba. Wavelength conversion experiment using fiber four-wave mixing. IEEE Photon. Technol. Lett., 4, 69-72(1992).

    [5] J. L. Bredas, C. Adant, P. Tackx, A. Persoons, B. Pierce. Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chem. Rev., 94, 243-278(1994).

    [6] Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, J. Wang. Giant two-photon absorption in monolayer MoS2. Laser Photon. Rev., 9, 427-434(2015).

    [7] X. F. Wang, Z. W. Wang, J. G. Yu, C. L. Liu, X. J. Zhao, Q. H. Gong. Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass. Chem. Phys. Lett., 399, 230-233(2004).

    [8] X. Q. Yan, X. L. Zhang, S. Shi, Z. B. Liu, J. G. Tian. Third-order nonlinear susceptibility tensor elements of CS2 at femtosecond time scale. Opt. Express, 19, 5559-5564(2011).

    [9] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang. A graphene-based broadband optical modulator. Nature, 474, 64-67(2011).

    [10] Z. Sun, A. Martinez, F. Wang. Optical modulators with 2D layered materials. Nat. Photonics, 10, 227-238(2016).

    [11] C. Lee, X. Wei, J. W. Kysar, J. Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385-388(2008).

    [12] X. Dai, Z. Li, K. Du, H. Sun, Y. Yang, X. Zhang, X. Ma, J. Wang. Facile synthesis of in-situ nitrogenated graphene decorated by few-layer MoS2 for hydrogen evolution reaction. Electrochim. Acta, 171, 72-80(2015).

    [13] A. Martinez, Z. Sun. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics, 7, 842-845(2013).

    [14] X. Liu, Q. Guo, J. Qiu. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater., 29, 1605886(2017).

    [15] K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano, 7, 9260-9267(2013).

    [16] Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, J. Weng. Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser. Photon. Res., 3, A79-A86(2015).

    [17] C. Torres-Torres, N. Perea-López, A. L. Elías, H. R. Gutiérrez, D. A. Cullen, A. Berkdemir, F. López-Urías, H. Terrones, M. Terrones. Third order nonlinear optical response exhibited by mono- and few-layers of WS2. 2D Mater., 3, 021005(2016).

    [18] C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, X. Xu. Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity. Appl. Surf. Sci., 457, 115-120(2018).

    [19] Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, Z. X. Shen. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol., 9, 111-115(2014).

    [20] W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, R. M. Osgood. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett., 111, 106801(2013).

    [21] Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, W. Tang. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Physica B, 406, 2254-2260(2011).

    [22] Q. Zhao, Y. Guo, Y. Zhou, X. Xu, Z. Ren, J. Bai, X. Xu. Flexible and anisotropic properties of monolayer MX2 (M = Tc and Re; X = S, Se). J. Phys. Chem. C, 121, 23744-23751(2017).

    [23] M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, R. J. Cava. Large, non-saturating magnetoresistance in WTe2. Nature, 514, 205-208(2014).

    [24] J. Augustin, V. Eyert, T. Böker, W. Frentrup, H. Dwelk, C. Janowitz, R. Manzke. Electronic band structure of the layered compound. Phys. Rev. B, 62, 10812-10823(2000).

    [25] H. Y. Lv, W. J. Lu, D. F. Shao, Y. Liu, S. G. Tan, Y. P. Sun. Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: from bulk to monolayer. Europhys. Lett., 110, 37004(2015).

    [26] W. D. Kong, S. F. Wu, P. Richard, C. S. Lian, J. T. Wang, C. L. Yang, Y. G. Shi, H. Ding. Raman scattering investigation of large positive magnetoresistance material WTe2. Appl. Phys. Lett., 106, 081906(2015).

    [27] Q. Song, H. Wang, X. Xu, X. Pan, Y. Wang, F. Song, X. Wan, L. Dai. The polarization-dependent anisotropic Raman response of few-layer and bulk WTe2 under different excitation wavelengths. RSC Adv., 6, 103830(2016).

    [28] Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, L. Dai. The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy. Sci. Rep., 6, 29254(2016).

    [29] Y. Kim, Y. I. Jhon, J. Park, J. H. Kim, S. Lee, Y. M. Jhon. Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2. Nanoscale, 8, 2309-2316(2016).

    [30] G. Cunningham, D. Hanlon, N. McEvoy, G. S. Duesberg, J. N. Coleman. Large variations in both dark- and photoconductivity in nanosheet networks as nanomaterial is varied from MoS2 to WTe2. Nanoscale, 7, 198-208(2015).

    [31] J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, D. L. Feng. Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2. Phys. Rev. Lett., 115, 166601(2015).

    [32] A. Kumar, P. K. Ahluwalia. Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors. Eur. Phys. J. B, 85, 186(2012).

    [33] D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, J. Zhao. Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets. Small, 12, 1489-1497(2016).

    [34] J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, J. H. Lee. Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking. Adv. Funct. Mater., 26, 7454-7461(2016).

    [35] W. Gao, L. Huang, J. Xu, Y. Chen, C. Zhu, Z. Nie, Y. Li, X. Wang, Z. Xie, S. Zhu, J. Xu, X. Wan, C. Zhang, Y. Xu, Y. Shi, F. Wang. Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films. Appl. Phys. Lett., 112, 171112(2018).

    [36] M. Gao, M. Zhang, W. Niu, Y. Chen, M. Gu, H. Wang, F. Song, P. Wang, S. Yan, F. Wang, X. Wang, X. Wang, Y. Xu, R. Zhang. Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition. Appl. Phys. Lett., 111, 031906(2017).

    [37] X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, J. Wang. Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance. Nanoscale, 7, 2978-2986(2015).

    [38] D. Mueller, A. Shih, E. Roman, T. Madey, R. Kurtz, R. Stockbauer. A synchrotron radiation study of BaO films on W(001) and their interaction with H2O, CO2, and O2. J. Vac. Sci. Technol. A, 6, 1067-1071(1988).

    [39] G. P. Halada, C. R. Clayton. Comparison of Mo-N and W-N synergism during passivation of stainless steel through X-ray photoelectron spectroscopy and electrochemical analysis. J. Vac. Sci. Technol. A, 11, 2342-2347(1993).

    [40] S. F. Ho, S. Contarini, J. Rabalais. Ion-beam-induced chemical changes in the oxyanions (Moyn-) and oxides (Mox) where M = chromium, molybdenum, tungsten, vanadium, niobium and tantalum. J. Phys. Chem., 91, 4779-4788(1987).

    [41] Y. Jugnet, N. S. Prakash, L. Porte, T. M. Duc, T. T. A. Nguyen, R. Cinti, H. C. Poon, G. Grenet. Photoelectron diffraction on clean W(110) surface and bulk 4f core levels. Phys. Rev. B, 37, 8066-8071(1988).

    [42] A. J. Ricco, H. S. White, M. S. Wrighton. X-ray photoelectron and Auger electron spectroscopic study of the CdTe surface resulting from various surface pretreatments: correlation of photoelectrochemical and capacitance-potential behavior with surface chemical composition. J. Vac. Sci. Technol. A, 2, 910-915(1984).

    [43] W. E. Sartz, K. J. Wynne, D. M. Hercules. X-ray photoelectron spectroscopic investigation of Group VIA elements. Anal. Chem., 43, 1884-1887(1971).

    [44] F. Ye, J. Lee, J. Hu, Z. Mao, J. Wei, P. X. Feng. Environmental instability and degradation of single- and few-layer WTe2 nanosheets in ambient conditions. Small, 12, 5802-5808(2016).

    [45] M. K. Jana, A. Singh, D. J. Late, C. R. Rajamathi, K. Biswas, C. Felser, U. V. Waghmare, C. N. Rao. A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2. J. Phys. Condens. Matter, 27, 285401(2015).

    [46] S. Ijaz, A. Mahendru, D. Sanderson. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron., 26, 760-769(2002).

    [47] G. Kresse. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 11169-11186(1996).

    [48] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865-3868(1996).

    [49] Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, M. R. Kikta. Excited-state absorption studies of Cr4+ ions in several garnet host crystals. IEEE J. Quantum Electron., 34, 292-299(2002).

    [50] M. Sheik-Bahae, A. A. Said, E. W. Van Stryland. High-sensitivity, single-beam n2 measurements. Opt. Lett., 14, 955-957(1989).

    [51] T. K. Gustafson, P. L. Kelley, R. Y. Chiao, R. G. Brewer. Self-trapping in media with saturation of the nonlinear index. Appl. Phys. Lett., 12, 165-168(1968).

    [52] A. D. Boardman, S. Saltiel, S. Tanev. High-order nonlinear phase shift caused by cascaded third-order processes. Opt. Lett., 22, 148-150(1997).

    [53] R. W. Boyd, S. G. Lukishova, Y. R. Shen. Self-focusing: Past and Present(2009).

    [54] A. A. Said, D. J. Hagan, E. W. V. Stryland, J. Wang, J. Young, M. Sheikbahae, T. H. Wei. Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe. J. Opt. Soc. Am. B, 9, 405-414(1992).

    [55] S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, D. Tang. Third order nonlinear optical property of Bi2Se3. Opt. Express, 21, 2072-2082(2013).

    [56] S. Bikorimana, P. Lama, A. Walser, R. Dorsinville, S. Anghel, A. Mitioglu, A. Micu, L. Kulyuk. Nonlinear optical responses in two-dimensional transition metal dichalcogenide multilayer: WS2, WSe2, MoS2 and Mo0.5W0.5S2. Opt. Express, 24, 20685-20695(2016).

    [57] J. Li, C. G. Duan, Z. Q. Gu, D. S. Wang. Linear optical properties and multiphoton absorption of alkali halides calculated from first principles. Phys. Rev. B, 57, 2222-2228(1998).

    [58] K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, J. Wang. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors. Nanoscale, 6, 10530-10535(2014).

    Mi He, Yequan Chen, Lipeng Zhu, Huan Wang, Xuefeng Wang, Xinlong Xu, Zhanyu Ren, "Third-order nonlinear optical properties of WTe2 films synthesized by pulsed laser deposition," Photonics Res. 7, 1493 (2019)
    Download Citation