Journals
Advanced Photonics
Photonics Insights
Advanced Photonics Nexus
Photonics Research
Advanced Imaging
View All Journals
Chinese Optics Letters
High Power Laser Science and Engineering
Articles
Optics
Physics
Geography
View All Subjects
Conferences
CIOP
HPLSE
AP
View All Events
News
About CLP
Search by keywords or author
Login
Registration
Login in
Registration
Search
Search
Articles
Journals
News
Advanced Search
Top Searches
laser
the
2D Materials
Transformation optics
Quantum Photonics
Home
About
Issue in Progress
Current Issue
Special Issues
All Issues
Special Events
Journals >
>
Topics >
Photonic Manipulation
Contents
Photonic Manipulation
|
3 Article(s)
All-optical particle trap using orthogonally intersecting beams [Invited]
K. D. Leake, A. R. Hawkins, and H. Schmidt
We analyze the properties of a dual-beamtrap of orthogonally intersecting beams in the geometrical optics regime. We derive analytical expressions for the trapping location and stability criteria for trapping a microparticle with uncollimated Gaussian beams. An upper limit for the beam waist is found. Optical forces and particle trajectories are calculated numerically for the realistic case of a microparticle in intersecting liquid-core waveguides.
We analyze the properties of a dual-beamtrap of orthogonally intersecting beams in the geometrical optics regime. We derive analytical expressions for the trapping location and stability criteria for trapping a microparticle with uncollimated Gaussian beams. An upper limit for the beam waist is found. Optical forces and particle trajectories are calculated numerically for the realistic case of a microparticle in intersecting liquid-core waveguides.
showLess
Photonics Research
Publication Date: Apr. 29, 2013
Vol. 1, Issue 1, 01000047 (2013)
Get PDF
View fulltext
Development and applications of gain-switched fiber lasers [Invited]
Jianlong Yang, Yulong Tang, and and Jianqiu Xu
We briefly review the development of gain-switched rare-earth-doped fiber lasers and their applications in wavelength conversion to mid-IR, supercontinuum generation, and medicine in recent years. We illustrate the similarities between gain-switching and Q-switching techniques that will provide tools for the design and optimization of the gain-switched fiber lasers. From the nature of the gain-switched fiber lasers, benefits of this kind of lasers to 2-μm region and in-band-pumped (two-level system) laser systems are obvious. Advantages of in-band-pumped 2-μm lasers are discussed and analyzed with a simple numerical simulation in terms of Tm-doped fiber lasers. We also propose the key factors in the development of the gain-switched fiber lasers and predict the future tendency.
We briefly review the development of gain-switched rare-earth-doped fiber lasers and their applications in wavelength conversion to mid-IR, supercontinuum generation, and medicine in recent years. We illustrate the similarities between gain-switching and Q-switching techniques that will provide tools for the design and optimization of the gain-switched fiber lasers. From the nature of the gain-switched fiber lasers, benefits of this kind of lasers to 2-μm region and in-band-pumped (two-level system) laser systems are obvious. Advantages of in-band-pumped 2-μm lasers are discussed and analyzed with a simple numerical simulation in terms of Tm-doped fiber lasers. We also propose the key factors in the development of the gain-switched fiber lasers and predict the future tendency.
showLess
Photonics Research
Publication Date: Apr. 19, 2013
Vol. 1, Issue 1, 01000052 (2013)
Get PDF
View fulltext
Analytic solutions of the normal modes and light transmission of a cholesteric liquid crystal cell
Sabrina Relaix, Mykhailo Pevnyi, Wenyi Cao, and and Peter Palffy-Muhoray
Cholesteric liquid crystals, consisting of chiral molecules, form self-assembled periodic structures exhibiting a photonic bandgap. Their selective reflectivity makes them well suited for a variety of applications; their optical response is therefore of considerable interest. The reflectance and transmittance of finite cholesteric cells is usually calculated numerically. Evanescent modes in the bandgap make the calculations challenging; existing matrix propagation methods cannot describe the reflection and transmission coefficients of thick cholesteric cells accurately. Here we present analytic solutions for the electromagnetic fields in cholesteric cells of finite thickness, and use them to calculate the transmission and reflection spectra. The use of analytic solutions allows for the accurate description of arbitrarily thick cholesteric cells, which would not be possible with only direct numerical methods.
Cholesteric liquid crystals, consisting of chiral molecules, form self-assembled periodic structures exhibiting a photonic bandgap. Their selective reflectivity makes them well suited for a variety of applications; their optical response is therefore of considerable interest. The reflectance and transmittance of finite cholesteric cells is usually calculated numerically. Evanescent modes in the bandgap make the calculations challenging; existing matrix propagation methods cannot describe the reflection and transmission coefficients of thick cholesteric cells accurately. Here we present analytic solutions for the electromagnetic fields in cholesteric cells of finite thickness, and use them to calculate the transmission and reflection spectra. The use of analytic solutions allows for the accurate description of arbitrarily thick cholesteric cells, which would not be possible with only direct numerical methods.
showLess
Photonics Research
Publication Date: Apr. 19, 2013
Vol. 1, Issue 1, 01000058 (2013)
Get PDF
View fulltext
Topics
Adaptive Optics
Array Waveguide Devices
Atmospheric and Oceanic Optics
Coherence and Statistical Optics
Comments
Correction
Diffraction and Gratings
Digital Holography
Dispersion
Editorial
Fiber Devices
Fiber Optic Sensors
Fiber Optics
Fiber Optics and Optical Communications
Group Iv Photonics
Holography
Holography, Gratings, and Diffraction
Image Processing
Image Processing and Image Analysis
Imaging
Imaging Systems
Imaging Systems, Microscopy, and Displays
Instrumentation and Measurements
Integrated Optics
Integrated Optics Devices
Integrated Photonics
INTEGRATED PHOTONICS: CHALLENGES AND PERSPECTIVES
Interferometry
Interview
Laser Materials
Laser Materials Processing
Lasers and Laser Optics
Light-emitting Diodes
Liquid-Crystal Devices
Materials
Medical Optics and Biotechnology
Metamaterials
Microlasers
Microscopy
Microwave Photonics
Mode-locked Lasers
Nanomaterials
Nanophotonics
Nanophotonics and Photonic Crystals
Nanostructures
Nonlinear Optic
Nonlinear Optics
Optical and Photonic Materials
Optical Communications
Optical Communications and Interconnects
Optical Devices
Optical Manipulation
Optical Materials
OPTICAL MICROCAVITIES
Optical Resonators
Optical Trapping and Manipulation
Optical Vortices
Optics at Surfaces
Optoelectronics
Photodetectors
Photon Statistics
Photonic Crystals
Photonic Crystals and Devices
Photonic Manipulation
Photonic Manipulation
Physical Optics
Plasmonics
Plasmonics and Metamaterials
Polarization
Polarization and Ellipsometry
Polarization Rotators
Pulse Propagation and Temporal Solitons
Quantum Electrodynamics
Quantum Optics
QUANTUM PHOTONICS
Quantum Well Devices
Regular Papers
Remote Sensing and Sensors
Research Articles
Resonators
Scattering
Semiconductor UV Photonics
Sensors
Silicon Photonics
Spectroscopy
Surface Optics and Plasmonics
Surface Plasmons
Surface Waves
Terahertz Photonics: Applications and Techniques
Thin Film Devices
Thin Films
Ultrafast Optics