Journals
Advanced Photonics
Photonics Insights
Advanced Photonics Nexus
Photonics Research
Advanced Imaging
View All Journals
Chinese Optics Letters
High Power Laser Science and Engineering
Articles
Optics
Physics
Geography
View All Subjects
Conferences
CIOP
HPLSE
AP
View All Events
News
About CLP
Search by keywords or author
Login
Registration
Login in
Registration
Search
Search
Articles
Journals
News
Advanced Search
Top Searches
laser
the
2D Materials
Transformation optics
Quantum Photonics
Home
About
Issue in Progress
Current Issue
Special Issues
All Issues
Special Events
Journals >
>
Topics >
Photonic Crystals
Contents
Photonic Crystals
|
3 Article(s)
Engineering ultra-flattened-dispersion photonic crystal fibers with uniform holes by rotations of inner rings
Jin Hou, Jiajia Zhao, Chunyong Yang, Zhiyou Zhong, Yihua Gao, and and Shaoping Chen
Wepresent a novel method for engineering ultra-flattened-dispersion photonic crystal fibers with uniform air holes by rotations of inner air-hole rings around the fiber core. By choosing suitable rotation angles of each inner ring, theoretical results show that normal, anomalous, and nearly zero ultra-flattened-dispersion fibers in wide spectra ranges of interest can be obtained alternatively. Moreover, in our dispersion sensitive analysis, these types of fibers are robust to variations from optimal design parameters. The method is suitable for the accurate adjustment of fiber dispersion within a small range, which would be valuable for the fabrication of ultra-flattened-dispersion fibers and also have potential applications in wide-band high-speed optical communication systems.
Wepresent a novel method for engineering ultra-flattened-dispersion photonic crystal fibers with uniform air holes by rotations of inner air-hole rings around the fiber core. By choosing suitable rotation angles of each inner ring, theoretical results show that normal, anomalous, and nearly zero ultra-flattened-dispersion fibers in wide spectra ranges of interest can be obtained alternatively. Moreover, in our dispersion sensitive analysis, these types of fibers are robust to variations from optimal design parameters. The method is suitable for the accurate adjustment of fiber dispersion within a small range, which would be valuable for the fabrication of ultra-flattened-dispersion fibers and also have potential applications in wide-band high-speed optical communication systems.
showLess
Photonics Research
Publication Date: Mar. 15, 2014
Vol. 2, Issue 2, 02000059 (2014)
Get PDF
View fulltext
Photonic crystal slabs in flexible organic light-emitting diodes
Arfat Pradana, and Martina Gerken
Photonic crystal slabs integrated into organic light-emitting diodes (OLEDs) allow for the extraction of waveguide modes and thus an increase in OLED efficiency. We fabricated linear Bragg gratings with a 460-nm period on flexible polycarbonate substrates using UV nanoimprint lithography. A hybrid organic–inorganic nanoimprint resist is used that serves also as a high refractive index layer. OLEDs composed of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) polymer anode, an organic emission layer [poly(p-phenylene vinylene) (PPV)-derivative “Super Yellow”], and a metal cathode (LiF/Al) are deposited onto the flexible grating substrates. The effects of photonic crystal slab deformation in a flexible OLED are studied in theory and experiment. The substrate deformation is modeled using the finite-element method. The influence of the change in the grating period and the waveguide thickness under bending are investigated. The change in the grating period is found to be the dominant effect. At an emission angle of 20° a change in the resonance wavelength of 1.2% is predicted for a strain of 1.3% perpendicular to the grating grooves. This value is verified experimentally by analyzing electroluminescence and photoluminescence properties of the fabricated grating OLEDs.
Photonic crystal slabs integrated into organic light-emitting diodes (OLEDs) allow for the extraction of waveguide modes and thus an increase in OLED efficiency. We fabricated linear Bragg gratings with a 460-nm period on flexible polycarbonate substrates using UV nanoimprint lithography. A hybrid organic–inorganic nanoimprint resist is used that serves also as a high refractive index layer. OLEDs composed of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) polymer anode, an organic emission layer [poly(p-phenylene vinylene) (PPV)-derivative “Super Yellow”], and a metal cathode (LiF/Al) are deposited onto the flexible grating substrates. The effects of photonic crystal slab deformation in a flexible OLED are studied in theory and experiment. The substrate deformation is modeled using the finite-element method. The influence of the change in the grating period and the waveguide thickness under bending are investigated. The change in the grating period is found to be the dominant effect. At an emission angle of 20° a change in the resonance wavelength of 1.2% is predicted for a strain of 1.3% perpendicular to the grating grooves. This value is verified experimentally by analyzing electroluminescence and photoluminescence properties of the fabricated grating OLEDs.
showLess
Photonics Research
Publication Date: Mar. 17, 2015
Vol. 3, Issue 2, 02000032 (2015)
Get PDF
View fulltext
Light-driven crystallization of polystyrene micro-spheres
Jing Liu, and Zhi-Yuan Li
We investigate the dynamic crystallization processes of colloidal photonic crystals, which are potentially invaluable for solving a number of existing and emerging technical problems in regards to controlled fabrication of crystals, such as size normalization, stability improvement, and acceleration of synthesis. In this paper, we report systematic high-resolution optical observation of the spontaneous crystallization of monodisperse polystyrene (PS) micro-spheres in aqueous solution into close-packed arrays in a static line optical tweezers. The experiments demonstrate that the crystal structure is mainly affected by the minimum potential energy of the system; however, the crystallization dynamics could be affected by various mechanical, physical, and geometric factors. The complicated dynamic transformation process from 1D crystallization to 2D crystallization and the creation and annihilation of dislocations and defects via crystal relaxation are clearly illustrated. Two major crystal growth modes, the epitaxy growth pattern and the inserted growth pattern, have been identified to play a key role in shaping the dynamics of the 1D and 2D crystallization process. These observations offer invaluable insights for in-depth research about colloidal crystal crystallization.
We investigate the dynamic crystallization processes of colloidal photonic crystals, which are potentially invaluable for solving a number of existing and emerging technical problems in regards to controlled fabrication of crystals, such as size normalization, stability improvement, and acceleration of synthesis. In this paper, we report systematic high-resolution optical observation of the spontaneous crystallization of monodisperse polystyrene (PS) micro-spheres in aqueous solution into close-packed arrays in a static line optical tweezers. The experiments demonstrate that the crystal structure is mainly affected by the minimum potential energy of the system; however, the crystallization dynamics could be affected by various mechanical, physical, and geometric factors. The complicated dynamic transformation process from 1D crystallization to 2D crystallization and the creation and annihilation of dislocations and defects via crystal relaxation are clearly illustrated. Two major crystal growth modes, the epitaxy growth pattern and the inserted growth pattern, have been identified to play a key role in shaping the dynamics of the 1D and 2D crystallization process. These observations offer invaluable insights for in-depth research about colloidal crystal crystallization.
showLess
Photonics Research
Publication Date: Apr. 18, 2017
Vol. 5, Issue 3, 03000201 (2017)
Get PDF
View fulltext
Topics
Adaptive Optics
Array Waveguide Devices
Atmospheric and Oceanic Optics
Category Pending
Coherence and Statistical Optics
Comments
Correction
Diffraction and Gratings
Dispersion
Editorial
Fiber Devices
Fiber Optic Sensors
Fiber Optics
Fiber Optics and Optical Communications
Group Iv Photonics
Holography
Holography, Gratings, and Diffraction
Image Processing
Image Processing and Image Analysis
Imaging
Imaging Systems
Imaging Systems, Microscopy, and Displays
Instrumentation and Measurements
Integrated Optics
Integrated Optics Devices
Integrated Photonics
INTEGRATED PHOTONICS: CHALLENGES AND PERSPECTIVES
Interferometry
Interview
introduction
Laser Materials
Laser Materials Processing
Lasers and Laser Optics
Light-emitting Diodes
Liquid-Crystal Devices
Materials
Medical Optics and Biotechnology
Metamaterials
Microlasers
Microscopy
Microwave Photonics
Mode-locked Lasers
Nanomaterials
Nanophotonics
Nanophotonics and Photonic Crystals
Nanostructures
Nonlinear Optic
Nonlinear Optics
Optical and Photonic Materials
Optical Communications
Optical Communications and Interconnects
Optical Devices
Optical Manipulation
Optical Materials
OPTICAL MICROCAVITIES
Optical Resonators
Optical Trapping and Manipulation
Optical Vortices
Optics at Surfaces
Optoelectronics
Photodetectors
Photon Statistics
Photonic Crystals
Photonic Crystals and Devices
Photonic Manipulation
Photonic Manipulation
Physical Optics
Plasmonics
Plasmonics and Metamaterials
Polarization
Polarization and Ellipsometry
Polarization Rotators
Pulse Propagation and Temporal Solitons
Quantum Electrodynamics
Quantum Optics
QUANTUM PHOTONICS
Quantum Well Devices
Regular Papers
Remote Sensing and Sensors
Research Articles
Resonators
Scattering
Semiconductor UV Photonics
Sensors
Silicon Photonics
Spectroscopy
Surface Optics and Plasmonics
Surface Plasmons
Surface Waves
Terahertz Photonics: Applications and Techniques
Thin Film Devices
Thin Films
Ultrafast Optics