Integrated Optics|103 Article(s)
Self-configuring universal linear optical component [Invited]
David A. B. Miller
We show how to design an optical device that can perform any linear function or coupling between inputs and outputs. This design method is progressive, requiring no global optimization. We also show how the device can configure itself progressively, avoiding design calculations and allowing the device to stabilize itself against drifts in component properties and to continually adjust itself to changing conditions. This self-configuration operates by training with the desired pairs of orthogonal input and output functions, using sets of detectors and local feedback loops to set individual optical elements within the device, with no global feedback or multiparameter optimization required. Simple mappings, such as spatial mode conversions and polarization control, can be implemented using standard planar integrated optics. In the spirit of a universal machine, we show that other linear operations, including frequency and time mappings, as well as nonreciprocal operation, are possible in principle, even if very challenging in practice, thus proving there is at least one constructive design for any conceivable linear optical component; such a universal device can also be self-configuring. This approach is general for linear waves, and could be applied to microwaves, acoustics, and quantum mechanical superpositions.
Photonics Research
  • Publication Date: Feb. 27, 2013
  • Vol. 1, Issue 1, 01000001 (2013)
High-order sideband optical properties of a DNA–quantum dot hybrid system [Invited]
Yang Li, and Kadi Zhu
Photonics Research
  • Publication Date: Apr. 22, 2013
  • Vol. 1, Issue 1, 01000016 (2013)
High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications [Invited]
Leopold Virot, Laurent Vivien, Jean-Marc Fedeli, Yann Bogumilowicz, Jean-Michel Hartmann, Frederic Boeuf, Paul Crozat, Delphine Marris-Morini, and and Eric Cassan
Photonics Research
  • Publication Date: Sep. 15, 2013
  • Vol. 1, Issue 3, 03000140 (2013)
Simultaneous evaluation of two branches of a multifunctional integrated optic chip with an ultra-simple dual-channel configuration
Yonggui Yuan, Chuang Li, Jun Yang, Ai Zhou, Shuai Liang, Zhangjun Yu, Bing Wu, Feng Peng, Yu Zhang, Zhihai Liu, and Libo Yuan
We propose an ultra-simple dual-channel configuration for simultaneously evaluating two branches of a multifunctional integrated optic chip (MFIOC). In the configuration, the MFIOC is employed as a beam splitter to construct the demodulation interferometer together with a 2 × 2 fiber coupler. Interference happens between polarization modes traveling through different channels of the MFIOC. The cross-couplings of each channel are respectively characterized by the interference peaks which distribute on opposite sides of the central interference peak. Temperature responses of the MFIOC are experimentally measured from ?40°C to 80°C. Results show that the proposed configuration can achieve simultaneous dual-channel transient measurements with resolution of ?90 dB and dynamic range of 90 dB. In addition, the two channels of the configuration have consistent measuring performance, and the two branches of the MFIOC have different responses to temperature variation.
Photonics Research
  • Publication Date: May. 15, 2015
  • Vol. 3, Issue 4, 04000115 (2015)
Design of a barcode-like waveguide nanostructurefor efficient chip–fiber coupling
Xiang Wen, Ke Xu, and Qinghai Song
Photonics Research
  • Publication Date: Nov. 15, 2016
  • Vol. 4, Issue 6, 06000209 (2016)
InP-based directly modulated monolithic integrated few-mode transmitter
Zhaosong Li, Dan Lu, Yiming He, Fangyuan Meng, Xuliang Zhou, and Jiaoqing Pan
A monolithic integrated few-mode transmitter comprising of two directly modulated distributed feedback lasers and a multimode-interference-coupler-based mode converter-multiplexer with 66% mode conversion efficiency was designed and demonstrated. A fundamental TE0 mode and a first-order TE1 mode were successfully generated from the transmitter, with the output power of 4 and 5.5 mW at a pump current of around 150 mA, respectively, at the common output port. The small signal modulation bandwidth of the TE0 and TE1 channels reached 17.4 and 14.7 GHz, respectively. Error-free 2×10-Gbit/s direct modulation of the two-mode transmitter was demonstrated, with a power penalty of 4.3 dB between the TE0 mode and the TE1 mode at the bit error rate of 1×10 9.
Photonics Research
  • Publication Date: Apr. 20, 2018
  • Vol. 6, Issue 5, 05000463 (2018)
Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide
Qian Gao, Erwen Li, and Alan X. Wang
Transparent conductive oxides have emerged as a new type of plasmonic material and demonstrated unique electro-optic (E-O) modulation capabilities for next-generation photonic devices. In this paper, we report an ultra-compact, broadband electro-absorption (EA) modulator using an epsilon-near-zero (ENZ) indium-tin oxide (ITO). The device is fabricated on a standard silicon-on-insulator platform through the integration with a 3 μm long, 300 nm wide gold plasmonic slot waveguide. The active E-O modulation region consists of a metal–HfO2–ITO capacitor that can electrically switch the ITO into ENZ with ultra-high modulation strengths of 2.62 and 1.5 dB/μm in simulation and experiment, respectively. The EA modulator also demonstrated a uniform E-O modulation with 70 nm optical bandwidth from 1530 to 1600 nm wavelength.
Photonics Research
  • Publication Date: Mar. 22, 2018
  • Vol. 6, Issue 4, 04000277 (2018)
Broadband rhenium disulfide optical modulator for solid-state lasers
Xiancui Su, Baitao Zhang, Yiran Wang, Guanbai He, Guoru Li, Na Lin, Kejian Yang, Jingliang He, and Shande Liu
Rhenium disulfide (ReS2), a member of group VII transition metal dichalcogenides (TMDs), has attracted increasing attention because of its unique distorted 1T structure and electronic and optical properties, which are much different from those of group VI TMDs (MoS2, WS2, MoSe2, WSe2, etc.). It has been proved that bulk ReS2 behaves as a stack of electronically and vibrationally decoupled monolayers, which offers remarkable possibilities to prepare a monolayer ReS2 facilely and offers a novel platform to study photonic properties of TMDs. However, due to the large and layer-independent bandgap, the nonlinear optical properties of ReS2 from the visible to mid-infrared spectral range have not yet been investigated. Here, the band structure of ReS2 with the introduction of defects is simulated by the ab initio method, and the results indicate that the bandgap can be reduced from 1.38 to 0.54 eV with the introduction of defects in a suitable range. In the experiment, using a bulk ReS2 with suitable defects as the raw material, a few-layered broadband ReS2 saturable absorber (SA) is prepared by the liquid phase exfoliation method. Using the as-prepared ReS2 SA, passively Q-switched solid-state lasers at wavelengths of 0.64, 1.064, and 1.991 μm are in
Photonics Research
  • Publication Date: Apr. 26, 2018
  • Vol. 6, Issue 6, 06000498 (2018)
High-performance AlGaInP light-emitting diodes integrated on silicon through a superior quality germanium-on-insulator
Yue Wang, Bing Wang, Wardhana A. Sasangka, Shuyu Bao, Yiping Zhang, Hilmi Volkan Demir, Jurgen Michel, Kenneth Eng Kian Lee, Soon Fatt Yoon, Eugene A. Fitzgerald, Chuan Seng Tan, and Kwang Hong Lee
High-performance GaInP/AlGaInP multi-quantum well light-emitting diodes (LEDs) grown on a low threading dislocation density (TDD) germanium-on-insulator (GOI) substrate have been demonstrated. The low TDD of the GOI substrate is realized through Ge epitaxial growth, wafer bonding, and layer transfer processes on 200 mm wafers. With O2 annealing, the TDD of the GOI substrate can be reduced to ~1.2×106 cm 2. LEDs fabricated on this GOI substrate exhibit record-high optical output power of 1.3 mW at a 670 nm peak wavelength under 280 mA current injection. This output power level is at least 2 times higher compared to other reports of similar devices on a silicon (Si) substrate without degrading the electrical performance. These results demonstrate great promise for the monolithic integration of visible-band optical sources with Si-based electronic circuitry and realization of high-density RGB (red, green, and blue) micro-LED arrays with control circuitry.
Photonics Research
  • Publication Date: Mar. 28, 2018
  • Vol. 6, Issue 4, 04000290 (2018)