Journals
Advanced Photonics
Photonics Insights
Advanced Photonics Nexus
Photonics Research
Advanced Imaging
View All Journals
Chinese Optics Letters
High Power Laser Science and Engineering
Articles
Optics
Physics
Geography
View All Subjects
Conferences
CIOP
HPLSE
AP
View All Events
News
About CLP
Search by keywords or author
Login
Registration
Login in
Registration
Search
Search
Articles
Journals
News
Advanced Search
Top Searches
laser
the
2D Materials
Transformation optics
Quantum Photonics
Home
About
Issue in Progress
Current Issue
Special Issues
All Issues
Special Events
Journals >
>
Topics >
Image Processing
Contents
Image Processing
|
4 Article(s)
Method for enhancing visibility of hazy images based on polarimetric imaging
Jian Liang, Liyong Ren, Enshi Qu, Bingliang Hu, and Yingli Wang
A novel polarimetric dehazing method is proposed based on three linear polarization images (0°, 45°, and 90°). The polarization orientation angle of the light scattered by the haze particles is introduced in the algorithm. No additional image-processing algorithm is needed in the postprocessing. It is found that the dehazed image suffers from little noise and the details of the objects close to the observer can be preserved well. In addition, this algorithm is also proved to be useful for preserving image colors. Experimental results demonstrate that such an algorithm has some universality in handling all kinds of haze. We think that this robust algorithm might be very suitable for real-time dehazing.
A novel polarimetric dehazing method is proposed based on three linear polarization images (0°, 45°, and 90°). The polarization orientation angle of the light scattered by the haze particles is introduced in the algorithm. No additional image-processing algorithm is needed in the postprocessing. It is found that the dehazed image suffers from little noise and the details of the objects close to the observer can be preserved well. In addition, this algorithm is also proved to be useful for preserving image colors. Experimental results demonstrate that such an algorithm has some universality in handling all kinds of haze. We think that this robust algorithm might be very suitable for real-time dehazing.
showLess
Photonics Research
Publication Date: Jan. 15, 2014
Vol. 2, Issue 1, 01000038 (2014)
Get PDF
View fulltext
Enhanced depth resolution in optical scanning holography using a configurable pupil
Haiyan Ou, Ting-Chung Poon, Kenneth K. Y. Wong, and and Edmund Y. Lam
The optical scanning holography (OSH) technique can capture all the three-dimensional volume information of an object in a hologram via a single raster scan. The digital hologram can then be processed to reconstruct individual sectional images of the object. In this paper, we present a scheme to reconstruct sectional images in OSH with enhanced depth resolution, where a spatial light modulator (SLM) is adopted as a configurable point pupil. By switching the SLM between two states, different Fresnel zone plates (FZPs) are generated based on the same optical system. With extra information provided by different FZPs, a depth resolution at 0.7 μm can be achieved.
The optical scanning holography (OSH) technique can capture all the three-dimensional volume information of an object in a hologram via a single raster scan. The digital hologram can then be processed to reconstruct individual sectional images of the object. In this paper, we present a scheme to reconstruct sectional images in OSH with enhanced depth resolution, where a spatial light modulator (SLM) is adopted as a configurable point pupil. By switching the SLM between two states, different Fresnel zone plates (FZPs) are generated based on the same optical system. With extra information provided by different FZPs, a depth resolution at 0.7 μm can be achieved.
showLess
Photonics Research
Publication Date: Mar. 15, 2014
Vol. 2, Issue 2, 02000064 (2014)
Get PDF
View fulltext
Experimental investigation of ghost imaging of reflective objects with different surface roughness
Suqin Nan, Yanfeng Bai, Xiaohui Shi, Qian Shen, Lijie Qu, Hengxing Li, and Xiquan Fu
We present an experimental demonstration of ghost imaging of reflective objects with different surface roughness. The influence of the surface roughness, the transverse size of the test detector, and the reflective angle on the signal-to-noise ratio (SNR) is analyzed by measuring the second-order correlation of the light field based on classical statistical optics. It is shown that the SNR decreases with an increment of the surface roughness and the detector’s transverse size or a decrease of the reflective angle. Additionally, the comparative studies between the rough object and the smooth one under the same conditions are also discussed.
We present an experimental demonstration of ghost imaging of reflective objects with different surface roughness. The influence of the surface roughness, the transverse size of the test detector, and the reflective angle on the signal-to-noise ratio (SNR) is analyzed by measuring the second-order correlation of the light field based on classical statistical optics. It is shown that the SNR decreases with an increment of the surface roughness and the detector’s transverse size or a decrease of the reflective angle. Additionally, the comparative studies between the rough object and the smooth one under the same conditions are also discussed.
showLess
Photonics Research
Publication Date: Jul. 26, 2017
Vol. 5, Issue 4, 04000372 (2017)
Get PDF
View fulltext
High-resolution pseudo-inverse ghost imaging
Wenlin Gong
We present a pseudo-inverse ghost imaging (PGI) technique which can dramatically enhance the spatial transverse resolution of pseudo-thermal ghost imaging (GI). In comparison with conventional GI, PGI can break the limitation on the imaging resolution imposed by the speckle’s transverse size on the object plane and also enables the reconstruction of an N-pixel image from much less than N measurements. This feature also allows high-resolution imaging of gray-scale objects. Experimental and numerical data assessing the performance of the technique are presented.
We present a pseudo-inverse ghost imaging (PGI) technique which can dramatically enhance the spatial transverse resolution of pseudo-thermal ghost imaging (GI). In comparison with conventional GI, PGI can break the limitation on the imaging resolution imposed by the speckle’s transverse size on the object plane and also enables the reconstruction of an N-pixel image from much less than N measurements. This feature also allows high-resolution imaging of gray-scale objects. Experimental and numerical data assessing the performance of the technique are presented.
showLess
Photonics Research
Publication Date: Aug. 21, 2015
Vol. 3, Issue 5, 05000234 (2015)
Get PDF
View fulltext
Topics
Adaptive Optics
Array Waveguide Devices
Atmospheric and Oceanic Optics
Category Pending
Coherence and Statistical Optics
Comments
Correction
Diffraction and Gratings
Dispersion
Editorial
Fiber Devices
Fiber Optic Sensors
Fiber Optics
Fiber Optics and Optical Communications
Group Iv Photonics
Holography
Holography, Gratings, and Diffraction
Image Processing
Image Processing and Image Analysis
Imaging
Imaging Systems
Imaging Systems, Microscopy, and Displays
Instrumentation and Measurements
Integrated Optics
Integrated Optics Devices
Integrated Photonics
INTEGRATED PHOTONICS: CHALLENGES AND PERSPECTIVES
Interferometry
Interview
introduction
Laser Materials
Laser Materials Processing
Lasers and Laser Optics
Light-emitting Diodes
Liquid-Crystal Devices
Materials
Medical Optics and Biotechnology
Metamaterials
Microlasers
Microscopy
Microwave Photonics
Mode-locked Lasers
Nanomaterials
Nanophotonics
Nanophotonics and Photonic Crystals
Nanostructures
Nonlinear Optic
Nonlinear Optics
Optical and Photonic Materials
Optical Communications
Optical Communications and Interconnects
Optical Devices
Optical Manipulation
Optical Materials
OPTICAL MICROCAVITIES
Optical Resonators
Optical Trapping and Manipulation
Optical Vortices
Optics at Surfaces
Optoelectronics
Photodetectors
Photon Statistics
Photonic Crystals
Photonic Crystals and Devices
Photonic Manipulation
Photonic Manipulation
Physical Optics
Plasmonics
Plasmonics and Metamaterials
Polarization
Polarization and Ellipsometry
Polarization Rotators
Pulse Propagation and Temporal Solitons
Quantum Electrodynamics
Quantum Optics
QUANTUM PHOTONICS
Quantum Well Devices
Regular Papers
Remote Sensing and Sensors
Research Articles
Resonators
Scattering
Semiconductor UV Photonics
Sensors
Silicon Photonics
Spectroscopy
Surface Optics and Plasmonics
Surface Plasmons
Surface Waves
Terahertz Photonics: Applications and Techniques
Thin Film Devices
Thin Films
Ultrafast Optics