Journals
Advanced Photonics
Photonics Insights
Advanced Photonics Nexus
Photonics Research
Advanced Imaging
View All Journals
Chinese Optics Letters
High Power Laser Science and Engineering
Articles
Optics
Physics
Geography
View All Subjects
Conferences
CIOP
HPLSE
AP
View All Events
News
About CLP
Search by keywords or author
Login
Registration
Login in
Registration
Search
Search
Articles
Journals
News
Advanced Search
Top Searches
laser
the
2D Materials
Transformation optics
Quantum Photonics
Home
About
Issue in Progress
Current Issue
Special Issues
All Issues
Special Events
Journals >
>
Topics >
Adaptive Optics
Contents
Adaptive Optics
|
1 Article(s)
Flood-illuminated adaptive optics ophthalmoscope with a single curved relay mirror
Ruixue Liu, Yue Qi, Xianliang Zheng, Mingliang Xia, and and Li Xuan
For decreasing light loss and diminishing the aberrations of the optical system, an open-loop adaptive optics (AO) system for retinal imaging in vivo is introduced. Taking advantage of the ability of young human eyes to accommodate, there was only one single curved mirror to make the pupil of the eye conjugate with the wavefront corrector and the wavefront sensor. A liquid crystal spatial light modulator (LC-SLM) was adopted as the wavefront corrector because the LC-SLM can be made in a small size to match the sensor. To reduce a pair of lenses or focusing mirrors, the wavefront corrector and sensor are positioned in the noncommon path. The system adopts open-loop control and the high-precision LC-SLM guarantees the effectiveness of the AO system. The designed field of view is 1° on the retina (about 300 μm). The image quality was simulated with different mirror surface types, including circular, parabolic, and hyperbolic. A hyperbolic mirror with conic constant -1.07, which is close to -1, could best eliminate the aberrations. Theoretical analysis showed that the optical throughput of this system was at least 22.4% higher than that of a standard transmission AO system. In a practical experiment, a parabolic mirror was positioned in the optical path. Images of the cone photoreceptors and the capillary vessels were obtained successfully. This system simplifies the optical setup in comparison to the commonly used 4F systems while still guaranteeing the effectiveness of AO to correct the ocular aberrations.
For decreasing light loss and diminishing the aberrations of the optical system, an open-loop adaptive optics (AO) system for retinal imaging in vivo is introduced. Taking advantage of the ability of young human eyes to accommodate, there was only one single curved mirror to make the pupil of the eye conjugate with the wavefront corrector and the wavefront sensor. A liquid crystal spatial light modulator (LC-SLM) was adopted as the wavefront corrector because the LC-SLM can be made in a small size to match the sensor. To reduce a pair of lenses or focusing mirrors, the wavefront corrector and sensor are positioned in the noncommon path. The system adopts open-loop control and the high-precision LC-SLM guarantees the effectiveness of the AO system. The designed field of view is 1° on the retina (about 300 μm). The image quality was simulated with different mirror surface types, including circular, parabolic, and hyperbolic. A hyperbolic mirror with conic constant -1.07, which is close to -1, could best eliminate the aberrations. Theoretical analysis showed that the optical throughput of this system was at least 22.4% higher than that of a standard transmission AO system. In a practical experiment, a parabolic mirror was positioned in the optical path. Images of the cone photoreceptors and the capillary vessels were obtained successfully. This system simplifies the optical setup in comparison to the commonly used 4F systems while still guaranteeing the effectiveness of AO to correct the ocular aberrations.
showLess
Photonics Research
Publication Date: Sep. 15, 2013
Vol. 1, Issue 3, 03000124 (2013)
Get PDF
View fulltext
Topics
Adaptive Optics
Array Waveguide Devices
Atmospheric and Oceanic Optics
Coherence and Statistical Optics
Comments
Correction
Diffraction and Gratings
Digital Holography
Dispersion
Editorial
Fiber Devices
Fiber Optic Sensors
Fiber Optics
Fiber Optics and Optical Communications
Group Iv Photonics
Holography
Holography, Gratings, and Diffraction
Image Processing
Image Processing and Image Analysis
Imaging
Imaging Systems
Imaging Systems, Microscopy, and Displays
Instrumentation and Measurements
Integrated Optics
Integrated Optics Devices
Integrated Photonics
INTEGRATED PHOTONICS: CHALLENGES AND PERSPECTIVES
Interferometry
Interview
Laser Materials
Laser Materials Processing
Lasers and Laser Optics
Light-emitting Diodes
Liquid-Crystal Devices
Materials
Medical Optics and Biotechnology
Metamaterials
Microlasers
Microscopy
Microwave Photonics
Mode-locked Lasers
Nanomaterials
Nanophotonics
Nanophotonics and Photonic Crystals
Nanostructures
Nonlinear Optic
Nonlinear Optics
Optical and Photonic Materials
Optical Communications
Optical Communications and Interconnects
Optical Devices
Optical Manipulation
Optical Materials
OPTICAL MICROCAVITIES
Optical Resonators
Optical Trapping and Manipulation
Optical Vortices
Optics at Surfaces
Optoelectronics
Photodetectors
Photon Statistics
Photonic Crystals
Photonic Crystals and Devices
Photonic Manipulation
Photonic Manipulation
Physical Optics
Plasmonics
Plasmonics and Metamaterials
Polarization
Polarization and Ellipsometry
Polarization Rotators
Pulse Propagation and Temporal Solitons
Quantum Electrodynamics
Quantum Optics
QUANTUM PHOTONICS
Quantum Well Devices
Regular Papers
Remote Sensing and Sensors
Research Articles
Resonators
Scattering
Semiconductor UV Photonics
Sensors
Silicon Photonics
Spectroscopy
Surface Optics and Plasmonics
Surface Plasmons
Surface Waves
Terahertz Photonics: Applications and Techniques
Thin Film Devices
Thin Films
Ultrafast Optics