Journals
Advanced Photonics
Photonics Insights
Advanced Photonics Nexus
Photonics Research
Chinese Optics Letters
View All Journals
High Power Laser Science and Engineering
Articles
Optics
Physics
Geography
View All Subjects
Conferences
CIOP
HPLSE
AP
View All Events
News
Search by keywords or author
Login
Registration
Login in
Registration
Search
Search
Articles
Journals
News
Advanced Search
Top Searches
laser
the
2D Materials
Transformation optics
Quantum Photonics
Home
All Issues
Journals >
>
Topics >
X-ray Optics
Contents
X-ray Optics
|
2 Article(s)
Theoretical and Technical Research of X-ray Communication in Plasma Sheath
Tong SU, Lizhi SHENG, Yongan LIU, Xuehan ZHANG, Yifan LIU, and Baosheng ZHAO
Because of the imperfect theoretical model and insufficient experimental verification technologies, the problem of information transmission in the plasma sheath has not yet been resolved. In this paper, the interaction mechanism between X-ray photons and plasma is studied firstly, and a modified theoretical model is provided through numerical calculation and theoretical modeling. Different from the conclusion that X-rays can penetrate plasma without attenuation in the traditional wave model, the modified theoretical model established in this paper points out that the transmittance of X-rays in plasma is closely related to plasma electron density and incident X-ray flux. Secondly, an experimental system was built using a grid-controlled X-ray modulation emission source, a single-photon X-ray detector, and a dynamic plasma generator. Using this system, the non-uniform plasma which electron density ranges from 109/cm3 to 1014/cm3 is generated, and the X-ray communication with 1 Mbps communication rante and 10-5 bit error rate is also verified. The experimental results indicate that the modified theoretical model can explain and predict the experimental phenomena, and the experimental system can provide the solution for solving the communication problems in the plasma sheath.
Because of the imperfect theoretical model and insufficient experimental verification technologies, the problem of information transmission in the plasma sheath has not yet been resolved. In this paper, the interaction mechanism between X-ray photons and plasma is studied firstly, and a modified theoretical model is provided through numerical calculation and theoretical modeling. Different from the conclusion that X-rays can penetrate plasma without attenuation in the traditional wave model, the modified theoretical model established in this paper points out that the transmittance of X-rays in plasma is closely related to plasma electron density and incident X-ray flux. Secondly, an experimental system was built using a grid-controlled X-ray modulation emission source, a single-photon X-ray detector, and a dynamic plasma generator. Using this system, the non-uniform plasma which electron density ranges from 109/cm3 to 1014/cm3 is generated, and the X-ray communication with 1 Mbps communication rante and 10-5 bit error rate is also verified. The experimental results indicate that the modified theoretical model can explain and predict the experimental phenomena, and the experimental system can provide the solution for solving the communication problems in the plasma sheath.
showLess
Acta Photonica Sinica
Publication Date: Nov. 25, 2021
Vol. 50, Issue 11, 1134001 (2021)
Get PDF
View fulltext
Theoretical and Experimental Research of X-ray Communication in Shielded Environment
Xuehan ZHANG, Tong SU, Lizhi SHENG, Yongan LIU, and Baosheng ZHAO
Based on the theoretical model of the interaction between X-rays and matter, the transmission characteristics of X-rays in an electromagnetic shielding environment are studied, and the feasibility of X-rays communication for information transmission in an electromagnetic shielding environment is theoretically demonstrated. After that, a numerical simulation model of X-ray communication in a shielded environment is established, and the communication parameters of X-rays in an electromagnetic shielded environment are analyzed to achieve the index constraint of the core components. Finally, based on the key technologies of X-ray modulated emission and single-photon X-ray detection, an equivalent verification experiment of X-ray passing through the shielding material is conducted to realize the experimental verification of X-ray communication with a communication rate better than 23 kbps. The results are expected to provide some theoretical basis and experimental foundation for solving the radiation data transmission in a shielded environment.
Based on the theoretical model of the interaction between X-rays and matter, the transmission characteristics of X-rays in an electromagnetic shielding environment are studied, and the feasibility of X-rays communication for information transmission in an electromagnetic shielding environment is theoretically demonstrated. After that, a numerical simulation model of X-ray communication in a shielded environment is established, and the communication parameters of X-rays in an electromagnetic shielded environment are analyzed to achieve the index constraint of the core components. Finally, based on the key technologies of X-ray modulated emission and single-photon X-ray detection, an equivalent verification experiment of X-ray passing through the shielding material is conducted to realize the experimental verification of X-ray communication with a communication rate better than 23 kbps. The results are expected to provide some theoretical basis and experimental foundation for solving the radiation data transmission in a shielded environment.
showLess
Acta Photonica Sinica
Publication Date: Nov. 25, 2021
Vol. 50, Issue 11, 1134002 (2021)
Get PDF
View fulltext
Topics
Atmospheric and Oceanic Optics
Atomic and Molecular Physics
Detectors
Fiber Optics and Optical Communications
Holography
Image Processing
Imaging Systems
Instrumentation, Measurement and Metrology
Integrated Optics
Introduction for Special Issue
Lasers and Laser Optic
Lasers and Laser Optics
Machine Vision
Materials
Medical Optics and Biotechnology
Microscopy
Nonlinear Optics
Optical Design and Fabrication
Optical Designand Fabrication
Optical Device
Optical Devices
Optics at Surfaces
Optoelectronics
Physical Optics
Quantum Optics
Remote Sensing and Sensors
Scattering
Special Issue for Light Field Manipulation and Applications
Special Issue for Micro/Nanophotonics
Special Issue for the 60th Anniversary of XIOPM of CAS, and the 50th Anniversary of the Acta Photonica Sinica
Special Issue for the 60th Anniversary of XIOPM of CAS, and the 50th Anniversary of the Acta Photonica Sinica Ⅱ
Special Issue for Ultrafast Laser Precision Machining of Hard and Brittle Materials
Special Issue for Ultrafast Optics
Special Issue on Two-dimensional Optical Functional Materials and Devices
Spectroscopy
Thin Films
Ultrafast Optics
X-ray Optics