Journals
Advanced Photonics
Photonics Insights
Advanced Photonics Nexus
Photonics Research
Advanced Imaging
View All Journals
Chinese Optics Letters
High Power Laser Science and Engineering
Articles
Optics
Physics
Geography
View All Subjects
Conferences
CIOP
HPLSE
AP
View All Events
News
About CLP
Search by keywords or author
Login
Registration
Login in
Registration
Search
Search
Articles
Journals
News
Advanced Search
Top Searches
laser
the
2D Materials
Transformation optics
Quantum Photonics
Home
About
Early Posting
Current Issue
Issue in Progress
Special Issues
All Issues
Special Events
Journals >
>
Topics >
Atomic and Molecular Optics
Contents
Atomic and Molecular Optics
|
15 Article(s)
Coulomb potential influence in the attoclock experimental scheme
|
Editors' Pick
Zhilei Xiao, Wei Quan, Songpo Xu, Shaogang Yu, Yanlan Wang, Meng Zhao, Mingzheng Wei, Yu Zhou, Xuanyang Lai, Jing Chen, and Xiaojun Liu
Coulomb potential may induce a significant angular offset to the two-dimensional photoelectron momentum distributions for atoms subject to strong elliptically polarized laser fields. In the attoclock experiment, this offset usually cannot be easily disentangled from the contribution of tunneling delay and poses a main obstacle to the precise measurement of tunneling delay. Based on semiclassical calculations, here, we propose a method to extract the equivalent temporal offset induced solely by Coulomb potential (TOCP) in an attoclock experiment. Our calculations indicate that, at constant laser intensity, the TOCP shows distinctive wavelength dependence laws for different model atoms, and the ratio of the target atom’s TOCP to that of H becomes insensitive to wavelength and linearly proportional to (2Ip) 3/2, where Ip is the ionization potential of the target atom. This wavelength and Ip dependence of TOCP can be further applied to extract the Coulomb potential influence. Our work paves the way for an accurate measurement of the tunneling delay in the tunneling ionization of atoms subject to intense elliptically polarized laser fields.
Coulomb potential may induce a significant angular offset to the two-dimensional photoelectron momentum distributions for atoms subject to strong elliptically polarized laser fields. In the attoclock experiment, this offset usually cannot be easily disentangled from the contribution of tunneling delay and poses a main obstacle to the precise measurement of tunneling delay. Based on semiclassical calculations, here, we propose a method to extract the equivalent temporal offset induced solely by Coulomb potential (TOCP) in an attoclock experiment. Our calculations indicate that, at constant laser intensity, the TOCP shows distinctive wavelength dependence laws for different model atoms, and the ratio of the target atom’s TOCP to that of H becomes insensitive to wavelength and linearly proportional to (2Ip) 3/2, where Ip is the ionization potential of the target atom. This wavelength and Ip dependence of TOCP can be further applied to extract the Coulomb potential influence. Our work paves the way for an accurate measurement of the tunneling delay in the tunneling ionization of atoms subject to intense elliptically polarized laser fields.
showLess
Chinese Optics Letters
Publication Date: Jan. 10, 2020
Vol. 18, Issue 1, 010201 (2020)
Get PDF
View fulltext
Scaling law in nonsequential double ionization by counter-rotating two-color circularly polarized laser fields
Mian Peng, and Lihua Bai
Nonsequential double ionization (NSDI) of noble gas atoms in counter-rotating two-color circularly polarized (CRTC) laser fields is investigated. A scaling law is concluded by qualitatively and quantitatively comparing the momentum distributions of two electrons from NSDI in CRTC laser fields for different atoms with different parameters. The scaling law indicates that the momentum distributions from an atom driven by CRTC laser frequency ω1, ω2, and laser intensity I are the same as that from another atom irradiated by CRTC laser frequency kω1, kω2, and laser intensity k3I. This study can provide an avenue in the research of two-color laser field ionization.
Nonsequential double ionization (NSDI) of noble gas atoms in counter-rotating two-color circularly polarized (CRTC) laser fields is investigated. A scaling law is concluded by qualitatively and quantitatively comparing the momentum distributions of two electrons from NSDI in CRTC laser fields for different atoms with different parameters. The scaling law indicates that the momentum distributions from an atom driven by CRTC laser frequency ω1, ω2, and laser intensity I are the same as that from another atom irradiated by CRTC laser frequency kω1, kω2, and laser intensity k3I. This study can provide an avenue in the research of two-color laser field ionization.
showLess
Chinese Optics Letters
Publication Date: Nov. 10, 2020
Vol. 18, Issue 11, 110201 (2020)
Get PDF
View fulltext
Laser stabilizing to ytterbium clock transition with Rabi and Ramsey spectroscopy
Yuxin Sun, Yuan Yao, Yaqin Hao, Hongfu Yu, Yanyi Jiang, and Longsheng Ma
A cavity-stabilized 578 nm laser is used to probe the clock transition of ytterbium atoms trapped in optical lattice sites. We obtain a Fourier-limited 4.2-Hz-linewidth Rabi spectrum and a Ramsey spectrum with fringe linewidth of 3.3 Hz. Based on one of the spectra, the 578 nm laser light is frequency-stabilized to the center of the transition to achieve a closed-loop operation of an optical clock. Based on interleaved measurement, the frequency instability of a single optical clock is demonstrated to be 5.4 × 10-16/√τ.
A cavity-stabilized 578 nm laser is used to probe the clock transition of ytterbium atoms trapped in optical lattice sites. We obtain a Fourier-limited 4.2-Hz-linewidth Rabi spectrum and a Ramsey spectrum with fringe linewidth of 3.3 Hz. Based on one of the spectra, the 578 nm laser light is frequency-stabilized to the center of the transition to achieve a closed-loop operation of an optical clock. Based on interleaved measurement, the frequency instability of a single optical clock is demonstrated to be 5.4 × 10-16/√τ.
showLess
Chinese Optics Letters
Publication Date: Jul. 10, 2020
Vol. 18, Issue 7, 070201 (2020)
Get PDF
View fulltext
Laser frequency instability of 6 × 10
−16
using 10-cm-long cavities on a cubic spacer
Xiaotong Chen, Yanyi Jiang, Bo Li, Hongfu Yu, Haifeng Jiang, Tao Wang, Yuan Yao, and Longsheng Ma
We demonstrate two ultra-stable laser systems at 1064 nm by independently stabilizing two 10-cm-long Fabry–Pérot cavities. The reference cavities are on a cubic spacer, which is rigidly mounted for both low sensitivity to environmental vibration and ability for transportation. By comparing against an independent ultra-stable laser at 578 nm via an optical frequency comb, the 1064 nm lasers are measured to have frequency instabilities of 6 × 10?16 at 1 s averaging time.
We demonstrate two ultra-stable laser systems at 1064 nm by independently stabilizing two 10-cm-long Fabry–Pérot cavities. The reference cavities are on a cubic spacer, which is rigidly mounted for both low sensitivity to environmental vibration and ability for transportation. By comparing against an independent ultra-stable laser at 578 nm via an optical frequency comb, the 1064 nm lasers are measured to have frequency instabilities of 6 × 10?16 at 1 s averaging time.
showLess
Chinese Optics Letters
Publication Date: Mar. 10, 2020
Vol. 18, Issue 3, 030201 (2020)
Get PDF
View fulltext
Portable atomic gravimeter operating in noisy urban environments
|
Editors' Pick
Bin Chen, Jinbao Long, Hongtai Xie, Chenyang Li, Luokan Chen, Bonan Jiang, and Shuai Chen
The gravimeter based on atom interferometry has potential wide applications on building gravity networks and geophysics as well as gravity assisted navigation. Here, we demonstrate experimentally a portable atomic gravimeter operating in the noisy urban environment. Despite the influence of noisy external vibrations, our portable atomic gravimeter reaches a sensitivity as good as 65 μGal/Hz and a resolution of 1.1 μGal after 4000 s integration, being comparable to state-of-the-art atomic gravimeters. Our achievement paves the way for bringing the portable atomic gravimeter to field applications.
The gravimeter based on atom interferometry has potential wide applications on building gravity networks and geophysics as well as gravity assisted navigation. Here, we demonstrate experimentally a portable atomic gravimeter operating in the noisy urban environment. Despite the influence of noisy external vibrations, our portable atomic gravimeter reaches a sensitivity as good as 65 μGal/Hz and a resolution of 1.1 μGal after 4000 s integration, being comparable to state-of-the-art atomic gravimeters. Our achievement paves the way for bringing the portable atomic gravimeter to field applications.
showLess
Chinese Optics Letters
Publication Date: Sep. 10, 2020
Vol. 18, Issue 9, 090201 (2020)
Get PDF
View fulltext
Improving the NV generation efficiency by electron irradiation
Bowen Zhao, Yang Dong, Shaochun Zhang, Xiangdong Chen, Wei Zhu, and Fangwen Sun
The nitrogen vacancy (NV) center in diamond has been well applied in quantum sensing of electromagnetic field and temperature, where the sensitivity can be enhanced by the number of NV centers. Here, we used electron beam irradiation to increase the generation rate of NV centers by nearly 22 times. We systematically studied the optical and electronic properties of the NV center as a function of an electron irradiation dose, where the detection sensitivity of magnetic fields was improved. With such samples with dense NV centers, a sub-pico-Tesla sensitivity in magnetic fields detection can be achieved with optimal controls and detections.
The nitrogen vacancy (NV) center in diamond has been well applied in quantum sensing of electromagnetic field and temperature, where the sensitivity can be enhanced by the number of NV centers. Here, we used electron beam irradiation to increase the generation rate of NV centers by nearly 22 times. We systematically studied the optical and electronic properties of the NV center as a function of an electron irradiation dose, where the detection sensitivity of magnetic fields was improved. With such samples with dense NV centers, a sub-pico-Tesla sensitivity in magnetic fields detection can be achieved with optimal controls and detections.
showLess
Chinese Optics Letters
Publication Date: Aug. 10, 2020
Vol. 18, Issue 8, 080201 (2020)
Get PDF
View fulltext
Uncertainty evaluation of the second-order Zeeman shift of a transportable
87
Rb atomic fountain clock
Henan Cheng, Siminda Deng, Zhen Zhang, Jingfeng Xiang, Jingwei Ji, Wei Ren, Tang Li, Qiuzhi Qu, Liang Liu, and Desheng Lü
In this article, taking advantage of the special magnetic shieldings and the optimal coil design of a transportable Rb atomic fountain clock, the intensity distribution in space and the fluctuations with time of the quantization magnetic field in the Ramsey region were measured using the atomic magneton-sensitive transition method. In an approximately 310 mm long Ramsey region, a peak-to-peak magnetic field intensity of a 0.74 nT deviation in space and a 0.06 nT fluctuation with time were obtained. These results correspond to a second-order Zeeman frequency shift of approximately (2095.5±5.1)×10-17. This is an essential step in advancing the total frequency uncertainty of the fountain clock to the order of 10-17.
In this article, taking advantage of the special magnetic shieldings and the optimal coil design of a transportable Rb atomic fountain clock, the intensity distribution in space and the fluctuations with time of the quantization magnetic field in the Ramsey region were measured using the atomic magneton-sensitive transition method. In an approximately 310 mm long Ramsey region, a peak-to-peak magnetic field intensity of a 0.74 nT deviation in space and a 0.06 nT fluctuation with time were obtained. These results correspond to a second-order Zeeman frequency shift of approximately (2095.5±5.1)×10-17. This is an essential step in advancing the total frequency uncertainty of the fountain clock to the order of 10-17.
showLess
Chinese Optics Letters
Publication Date: Dec. 10, 2021
Vol. 19, Issue 12, 120201 (2021)
Get PDF
View fulltext
Dark state atoms trapping in a magic-wavelength optical lattice near the nanofiber surface
Dianqiang Su, Xiateng Qin, Yuan Jiang, Kaidi Jin, Zhonghua Ji, Yanting Zhao, Liantuan Xiao, and Suotang Jia
We report the experimental realization of dark state atoms trapping in a nanofiber optical lattice. By applying the magic-wavelength trapping potentials of cesium atoms, the AC Stark shifts are strongly suppressed. The dark magneto-optical trap efficiently transfers the cold atoms from bright (6S1/2, F = 4) into dark state (6S1/2, F = 3) for hyperfine energy levels of cesium atoms. The observed transfer efficiency is as high as 98% via saturation measurement. The trapping lifetime of dark state atoms trapped by a nanofiber optical lattice is also investigated, which is the key element for realizing optical storage. This work contributes to the manipulation of atomic electric dipole spin waves and quantum information storage for fiber networks.
We report the experimental realization of dark state atoms trapping in a nanofiber optical lattice. By applying the magic-wavelength trapping potentials of cesium atoms, the AC Stark shifts are strongly suppressed. The dark magneto-optical trap efficiently transfers the cold atoms from bright (6S1/2, F = 4) into dark state (6S1/2, F = 3) for hyperfine energy levels of cesium atoms. The observed transfer efficiency is as high as 98% via saturation measurement. The trapping lifetime of dark state atoms trapped by a nanofiber optical lattice is also investigated, which is the key element for realizing optical storage. This work contributes to the manipulation of atomic electric dipole spin waves and quantum information storage for fiber networks.
showLess
Chinese Optics Letters
Publication Date: Nov. 19, 2021
Vol. 20, Issue 2, 020201 (2022)
Get PDF
View fulltext
Frequency control of a lattice laser at 759 nm by referencing to Yb clock transition at 578 nm
Yaqin Hao, Yuan Yao, Haosen Shi, Hongfu Yu, Yanyi Jiang, and Longsheng Ma
We present the frequency control of a 759 nm laser as a lattice laser for an ytterbium (Yb) optical clock. The frequency stability and accuracy are transferred from the Yb optical clock via an optical frequency comb. Although the comb is frequency-stabilized on a rubidium microwave clock, the frequency instability of the 759 nm laser is evaluated at the 10-15 level at 1 s averaging time. The frequency of the 759 nm laser is controlled with an uncertainty within 1 Hz by referencing to the Yb clock transition. Such a frequency-controlled 759 nm laser is suitable for Yb optical clocks as the lattice laser. The technique of laser frequency control can be applied to other lasers in optical clocks.
We present the frequency control of a 759 nm laser as a lattice laser for an ytterbium (Yb) optical clock. The frequency stability and accuracy are transferred from the Yb optical clock via an optical frequency comb. Although the comb is frequency-stabilized on a rubidium microwave clock, the frequency instability of the 759 nm laser is evaluated at the 10-15 level at 1 s averaging time. The frequency of the 759 nm laser is controlled with an uncertainty within 1 Hz by referencing to the Yb clock transition. Such a frequency-controlled 759 nm laser is suitable for Yb optical clocks as the lattice laser. The technique of laser frequency control can be applied to other lasers in optical clocks.
showLess
Chinese Optics Letters
Publication Date: Sep. 23, 2022
Vol. 20, Issue 12, 120201 (2022)
Get PDF
View fulltext
Automatic, long-term frequency-stabilized lasers with sub-hertz linewidth and 10
−16
frequency instability
Chengzhi Yan, Haosen Shi, Yuan Yao, Hongfu Yu, Yanyi Jiang, and Longsheng Ma
We report two ultra-stable laser systems automatically frequency-stabilized to two high-finesse optical cavities. By employing analog-digital hybrid proportional integral derivative (PID) controllers, we keep the merits of wide servo bandwidth and servo accuracy by using analog circuits for the PID controller, and, at the same time, we realize automatic laser frequency locking by introducing digital logic into the PID controller. The lasers can be automatically frequency-stabilized to their reference cavities, and it can be relocked in 0.3 s when interruption happens, i.e., blocking and unblocking the laser light. These automatic frequency-stabilized lasers are measured to have a frequency instability of 6×10-16 at 1 s averaging time and a most probable linewidth of 0.3 Hz. The laser systems were tested for continuous operation over 11 days. Such ultra-stable laser systems in long-term robust operation will be beneficial to the applications of optical atomic clocks and precision measurement based on frequency-stabilized lasers.
We report two ultra-stable laser systems automatically frequency-stabilized to two high-finesse optical cavities. By employing analog-digital hybrid proportional integral derivative (PID) controllers, we keep the merits of wide servo bandwidth and servo accuracy by using analog circuits for the PID controller, and, at the same time, we realize automatic laser frequency locking by introducing digital logic into the PID controller. The lasers can be automatically frequency-stabilized to their reference cavities, and it can be relocked in 0.3 s when interruption happens, i.e., blocking and unblocking the laser light. These automatic frequency-stabilized lasers are measured to have a frequency instability of 6×10-16 at 1 s averaging time and a most probable linewidth of 0.3 Hz. The laser systems were tested for continuous operation over 11 days. Such ultra-stable laser systems in long-term robust operation will be beneficial to the applications of optical atomic clocks and precision measurement based on frequency-stabilized lasers.
showLess
Chinese Optics Letters
Publication Date: May. 26, 2022
Vol. 20, Issue 7, 070201 (2022)
Get PDF
View fulltext
Topics
3d holographic display
3d imaging and display
Applications
Atmospheric and oceanic optics
Atmospheric, Oceanic, Space, and Environmental Optics
Atomic and Molecular Optics
Atomic and Molecular Physics
Auto-stereography and virtual reality
Biomedical Optics
Biophotonics
Coatings for solar cell
Coherence and statistical optics
COHERENCE OPTICS AND STATISTICAL OPTICS
Computer generated hologram
Computer-generated holography
Deposition and process control
Design and analysis
Detectors
Diffraction and Gratings
Diffraction, Gratings, and Holography
Digital Holography
Duv/euv coatings
Editorial
Fiber Optics and Optical Communications
Fourier optics and optical signal processing
Fourier Optics and Signal Processing
General
Geometric Optics
Geometrical optics
Holographic reconstruction, display,and projection
Holography
Image processing
Image Processing and Machine Vision
Imaging Systems
Imaging Systems and Image Processing
Infrared and Terahertz Photonics
Instrumentation, measurement, and metrology
Instrumentation, Measurement, and Optical Sensing
Integral imaging
Integrate optics
Integrated Optics
Lasers and Laser Optics
Lasers, Optical Amplifiers, and Laser Optics
Letters
Light-matter Interaction
Machine Vision
Materials
Measurement
Medical and biological imaging
Medical optics and biotechnology
Metamaterials, plasmon polaritons, and waveguides in terahertz region
Microscopy
Microwave Photonics
Multiphoton processes
Nanophotonics
Nanophotonics, Metamaterials, and Plasmonics
Nolinear optics
Nonlinear Optics
optical computing
OPTICAL DATA STORAGE
Optical Design and Fabrication
optical design and fabrications
Optical devices
Optical divces
Optical Materials
Optical Sensing, Measurements, and Metrology
Optical trapping
Optics at Surfaces
Optics in Computing
Optics in Computing and Optical Data Storage
Optics in Interdisciplinary Research
Optoelectronics
Other Areas of Optics
Physical Optics
Plasmonics and Metamaterials
Quantum optics
Quantum Optics and Quantum Information
remote sensing
Remote Sensing and Sensors
Research Articles
Reviews
Scattering
Solar Energy and Photovoltaics
Sources and mechanisms of terahertz radiation
Special Issue on 70th anniversary of National University of Defense Technology
Special Issue on Lithium Niobate Based Photonic Devices
Special Issue on Lithium Noibate Based Photonic Devices
Special Issue on Metal Halide Perovskite and Their Applications
Special Issue on OISE Major Jointly Established by Tianjin University and Nankai University
Special Issue on Optical Metasurfaces: Fundamentals and Applications
Special Issue on Spatiotemporal Optical Fields and Time-Varying Optical Materials
Special Issue on the 20th Anniversary of Wuhan National Laboratory for Optoelectronics (WNLO)
Spectroscopy
Spectroscopy, imaging, and sensing using terahertz radiation
Thin films
Thin Films and Optics at Surfaces
Ultrafast Optics
Ultrafast Optics and Attosecond/High-field Physics
Ultrafast Optics: fundamentals and applications
Underwater Wireless Optical Communication
vision and color
Vision, color, and visual
Vision, Color, and Visual Optics
Visual Optics and Displays
X-ray Optics