• Chinese Optics Letters
  • Vol. 20, Issue 2, 021404 (2022)
Jinfang Yang1、2, Zhaohua Wang2、5, Jiajun Song2、3, Xianzhi Wang2、3, Renchong Lü1、2, Jiangfeng Zhu1, and Zhiyi Wei2、3、4、*
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
  • 2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Songshan Lake Materials Laboratory, Dongguan 523808, China
  • 5CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
  • show less
    DOI: 10.3788/COL202220.021404 Cite this Article Set citation alerts
    Jinfang Yang, Zhaohua Wang, Jiajun Song, Xianzhi Wang, Renchong Lü, Jiangfeng Zhu, Zhiyi Wei. Diode-pumped 13 W Yb:KGW femtosecond laser[J]. Chinese Optics Letters, 2022, 20(2): 021404 Copy Citation Text show less
    Experimental configuration of the SESAM mode-locked Yb:KGW laser. LD, laser diode; Yb:KGW, Yb:KG(WO4)2; SESAM, semiconductor saturable absorber mirror; DM, dichroic mirror; HR, high reflection mirror; M1, M2, M3, concave mirrors (R = 500 mm, 300 mm, 500 mm, respectively); OC, output coupler; GTI, Gires–Tournois interferometer mirror.
    Fig. 1. Experimental configuration of the SESAM mode-locked Yb:KGW laser. LD, laser diode; Yb:KGW, Yb:KG(WO4)2; SESAM, semiconductor saturable absorber mirror; DM, dichroic mirror; HR, high reflection mirror; M1, M2, M3, concave mirrors (R = 500 mm, 300 mm, 500 mm, respectively); OC, output coupler; GTI, Gires–Tournois interferometer mirror.
    (a) Output power as a function of the pump power. The blue solid line has a slope efficiency of 64.4%. (b) Power fluctuations at 13 W average output power in 2 h.
    Fig. 2. (a) Output power as a function of the pump power. The blue solid line has a slope efficiency of 64.4%. (b) Power fluctuations at 13 W average output power in 2 h.
    Spectral distribution of Yb:KGW mode-locked laser at the average output power of 13 W.
    Fig. 3. Spectral distribution of Yb:KGW mode-locked laser at the average output power of 13 W.
    Measured intensity autocorrelation trace of Yb:KGW femtosecond laser at the central wavelength of 1039 nm.
    Fig. 4. Measured intensity autocorrelation trace of Yb:KGW femtosecond laser at the central wavelength of 1039 nm.
    Typical RF with an RBW of 1 kHz. Inset: RF spectrum at 1 GHz wide span with the RBW of 200 kHz.
    Fig. 5. Typical RF with an RBW of 1 kHz. Inset: RF spectrum at 1 GHz wide span with the RBW of 200 kHz.
    Measured beam quality factor M2 of Yb:KGW femtosecond oscillator at the 13 W average output power.
    Fig. 6. Measured beam quality factor M2 of Yb:KGW femtosecond oscillator at the 13 W average output power.
    Jinfang Yang, Zhaohua Wang, Jiajun Song, Xianzhi Wang, Renchong Lü, Jiangfeng Zhu, Zhiyi Wei. Diode-pumped 13 W Yb:KGW femtosecond laser[J]. Chinese Optics Letters, 2022, 20(2): 021404
    Download Citation