• Laser & Optoelectronics Progress
  • Vol. 59, Issue 1, 0100003 (2022)
Haoyu Wang, Shuanghong Wu*, Haolin Zhang, Sheng Wang, Rui Wang, and Xiangru Wang**
Author Affiliations
  • College of Optoelectronics Science and Engineering, University of Electronic Science and Technology of China, Chengdu , Sichuan 610054, China
  • show less
    DOI: 10.3788/LOP202259.0100003 Cite this Article Set citation alerts
    Haoyu Wang, Shuanghong Wu, Haolin Zhang, Sheng Wang, Rui Wang, Xiangru Wang. Research Progress of Photomultiplication-Type Organic Photodetectors[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0100003 Copy Citation Text show less
    References

    [1] Pichler S, Rauch T, Seyrkammer R et al. Temperature dependent photoresponse from colloidal PbS quantum dot sensitized inorganic/organic hybrid photodiodes[J]. Applied Physics Letters, 98, 053304(2011).

    [2] Yokota T, Zalar P, Kaltenbrunner M et al. Ultraflexible organic photonic skin[J]. Science Advances, 2, e1501856(2016).

    [3] Xu H H, Liu J, Zhang J et al. Flexible organic/inorganic hybrid near-infrared photoplethysmogram sensor for cardiovascular monitoring[J]. Advanced Materials, 29, 1700975(2017).

    [4] Kim J, Gutruf P, Chiarelli A M et al. Miniaturized battery-free wireless systems for wearable pulse oximetry[J]. Advanced Functional Materials, 27, 1700975(2017).

    [5] Xu W L, Wu B, Zheng F et al. Förster resonance energy transfer and energy cascade in broadband photodetectors with ternary polymer bulk heterojunction[J]. The Journal of Physical Chemistry C, 119, 21913-21920(2015).

    [6] Fang H, Li J, Ding J et al. An origami perovskite photodetector with spatial recognition ability[J]. ACS Applied Materials & Interfaces, 9, 10921-10928(2017).

    [7] Lin C H, Tsai D S, Wei T C et al. Highly deformable origami paper photodetector arrays[J]. ACS Nano, 11, 10230-10235(2017).

    [8] Kim M, Kang P, Leem J et al. A stretchable crumpled graphene photodetector with plasmonically enhanced photoresponsivity[J]. Nanoscale, 9, 4058-4065(2017).

    [9] Wang H Y, Zheng Y F, Qin R H et al. Highly sensitive panchromatic ternary polymer photodetectors enabled by Förster resonance energy transfer and post solvent treatment[J]. Journal of Physics D: Applied Physics, 51, 104002(2018).

    [10] Kim K Y, Yoon S H, Kim I K et al. Flexible narrowband organic photodiode with high selectivity in color detection[J]. Nanotechnology, 30, 435203(2019).

    [11] Yang G J, Wang Z J, Duan Y X et al. High-performance organic photodetectors by introducing a non-fullerene acceptor to broaden long wavelength detective spectrum[J]. Nanoscale Research Letters, 14, 1-8(2019).

    [12] Li W, Xu Y L, Meng X Y et al. Visible to near-infrared photodetection based on ternary organic heterojunctions[J]. Advanced Functional Materials, 29, 1808948(2019).

    [13] Liu Z X, Lau T K, Zhou G Q et al. Achieving efficient organic solar cells and broadband photodetectors via simple compositional tuning of ternary blends[J]. Nano Energy, 63, 103807(2019).

    [14] Wang F, Yang X Y, Niu M S et al. Förster resonance energy transfer and morphology optimization for high-performance ternary organic photodetectors[J]. Organic Electronics, 67, 146-152(2019).

    [15] Qin Z L, Song D D, Xu Z et al. Filterless narrowband photodetectors employing perovskite/polymer synergetic layers with tunable spectral response[J]. Organic Electronics, 76, 105417(2020).

    [16] Liu K B, Yang X H, He T T et al. Indium phosphide-based near-infrared single photon avalanche photodiode detector arrays[J]. Laser & Optoelectronics Progress, 56, 220001(2019).

    [17] Qi D F, Fischbein M, Drndić M et al. Efficient polymer-nanocrystal quantum-dot photodetectors[J]. Applied Physics Letters, 86, 093103(2005).

    [18] Campbell I H, Crone B K. A near infrared organic photodiode with gain at low bias voltage[J]. Applied Physics Letters, 95, 263302(2009).

    [19] Guo F, Yang B, Yuan Y et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection[J]. Nature Nanotechnology, 7, 798-802(2012).

    [20] Daanoune M, Clerc R, Flament B et al. Physics of trap assisted photomultiplication in vertical organic photoresistors[J]. Journal of Applied Physics, 127, 055502(2020).

    [21] Gao X Y, Zhang Y, Cui Y X et al. Research progress in organic photomultiplication photodetector[J]. Laser & Optoelectronics Progress, 55, 070001(2018).

    [22] Liu Y Z, Li G H, Cui Y X et al. Research progress in perovskite photodetectors[J]. Laser & Optoelectronics Progress, 56, 010001(2019).

    [23] Shen L, Zhang Y, Bai Y et al. A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain[J]. Nanoscale, 8, 12990-12997(2016).

    [24] Shen L, Fang Y J, Wei H T et al. A highly sensitive narrowband nanocomposite photodetector with gain[J]. Advanced Materials, 28, 2043-2048(2016).

    [25] An T, Gong W, Ma J P. Photoelectronic multiplication organic photodetectors with facile fabrication and controllable operating voltage[J]. Organic Electronics, 67, 320-326(2019).

    [26] Li L L, Zhang F J, Wang W B et al. Trap-assisted photomultiplication polymer photodetectors obtaining an external quantum efficiency of 37500%[J]. ACS Applied Materials & Interfaces, 7, 5890-5897(2015).

    [27] Wang W, Zhang F, Li L et al. Improved performance of photomultiplication polymer photodetectors by adjustment of P3HT molecular arrangement[J]. ACS Applied Materials & Interfaces, 7, 22660-22668(2015).

    [28] Wang W B, Zhang F J, Bai H T et al. Photomultiplication photodetectors with P3HT: fullerene-free material as the active layers exhibiting a broad response[J]. Nanoscale, 8, 5578-5586(2016).

    [29] Wang W, Zhang F, Du M et al. Highly narrowband photomultiplication type organic photodetectors[J]. Nano Letters, 17, 1995-2002(2017).

    [30] Wang W B, Du M D, Zhang M et al. Organic photodetectors with gain and broadband/narrowband response under top/bottom illumination conditions[J]. Advanced Optical Materials, 6, 1800249(2018).

    [31] Lin Q Q, Armin A, Burn P L et al. Filterless narrowband visible photodetectors[J]. Nature Photonics, 9, 687-694(2015).

    [32] Miao J L, Zhang F J, Du M D et al. Photomultiplication type organic photodetectors with broadband and narrowband response ability[J]. Advanced Optical Materials, 6, 1800001(2018).

    [33] Zhao Z J, Wang J, Miao J L et al. Photomultiplication type organic photodetectors with tunable spectral response range[J]. Organic Electronics, 69, 354-360(2019).

    [34] Yang K X, Wang J, Miao J L et al. All-polymer photodetectors with photomultiplication[J]. Journal of Materials Chemistry C, 7, 9633-9640(2019).

    [35] Miao J L, Du M D, Fang Y et al. Photomultiplication type all-polymer photodetectors with single carrier transport property[J]. Science China Chemistry, 62, 1619-1624(2019).

    [36] Wang J B, Zheng Q D. Enhancing the performance of photomultiplication-type organic photodetectors using solution-processed ZnO as an interfacial layer[J]. Journal of Materials Chemistry C, 7, 1544-1550(2019).

    [37] Neethipathi D K, Ryu H S, Jang M S et al. High-performance photomultiplication photodiode with a 70 nm-thick active layer assisted by IDIC as an efficient molecular sensitizer[J]. ACS Applied Materials & Interfaces, 11, 21211-21217(2019).

    [38] Esopi M R, Calcagno M, Yu Q M. Organic ultraviolet photodetectors exhibiting photomultiplication, low dark current, and high stability[J]. Advanced Materials Technologies, 2, 1700025(2017).

    [39] Jang M S, Yoon S, Sim K M et al. Spatial confinement of the optical sensitizer to realize a thin film organic photodetector with high detectivity and thermal stability[J]. The Journal of Physical Chemistry Letters, 9, 8-12(2018).

    [40] Tang F, Wang C, Chen Q et al. Improved photomultiplication in inverted-structure organic photodetectors via interfacial engineering[J]. Applied Physics Letters, 113, 043303(2018).

    [41] Zhong Z M, Li K, Zhang J X et al. High-performance all-polymer photodetectors via a thick photoactive layer strategy[J]. ACS Applied Materials & Interfaces, 11, 14208-14214(2019).

    [42] Wang W Y, Shi L L, Zhang Y et al. Effect of photogenerated carrier distribution on performance enhancement of photomultiplication organic photodetectors[J]. Organic Electronics, 68, 56-62(2019).

    [43] Yoon S, Lee G S, Sim K M et al. End-group functionalization of non-fullerene acceptors for high external quantum efficiency over 150000% in photomultiplication type organic photodetectors[J]. Advanced Functional Materials, 31, 2006448(2021).

    [44] Liu M, Miao J L, Wang J et al. Broadband organic photodetectors exhibiting photomultiplication with a narrow bandgap non-fullerene acceptor as an electron trap[J]. Journal of Materials Chemistry C, 8, 9854-9860(2020).

    [45] Zhao Z J, Wang J, Xu C Y et al. Photomultiplication type broad response organic photodetectors with one absorber layer and one multiplication layer[J]. The Journal of Physical Chemistry Letters, 11, 366-373(2020).

    [46] Miao J L, Du M D, Fang Y et al. Acceptor-free photomultiplication-type organic photodetectors[J]. Nanoscale, 11, 16406-16413(2019).

    [47] Zhao Z, Li C, Shen L et al. Photomultiplication type organic photodetectors based on electron tunneling injection[J]. Nanoscale, 12, 1091-1099(2020).

    [48] Yang K X, Wang J, Zhao Z J et al. Ultraviolet to near-infrared broadband organic photodetectors with photomultiplication[J]. Organic Electronics, 83, 105739(2020).

    [49] Liu X D, Kim H, Guo L J. Optimization of thermally reduced graphene oxide for an efficient hole transport layer in polymer solar cells[J]. Organic Electronics, 14, 591-598(2013).

    [50] Zhou X K, Yang D Z, Ma D G. Extremely low dark current, high responsivity, all-polymer photodetectors with spectral response from 300 nm to 1000 nm[J]. Advanced Optical Materials, 3, 1570-1576(2015).

    [51] Peng W B, Yu R M, Wang X F et al. Temperature dependence of pyro-phototronic effect on self-powered ZnO/perovskite heterostructured photodetectors[J]. Nano Research, 9, 3695-3704(2016).

    [52] Wu S P, Xiao B, Zhao B F et al. High sensitivity polymer visible-near infrared photodetectors via an inverted device structure and manipulation of injection barrier height[J]. Small, 12, 3374-3380(2016).

    [53] Li F P, Peng W B, Pan Z J et al. Optimization of Si/ZnO/PEDOT: PSS tri-layer heterojunction photodetector by piezo-phototronic effect using both positive and negative piezoelectric charges[J]. Nano Energy, 48, 27-34(2018).

    [54] Shen L, Fang Y J, Dong Q F et al. Improving the sensitivity of a near-infrared nanocomposite photodetector by enhancing trap induced hole injection[J]. Applied Physics Letters, 106, 023301(2015).

    [55] Luo X, Lv W, Du L L et al. Insight into trap state dynamics for exploiting current multiplication in organic photodetectors[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 10, 485-492(2016).

    [56] Zhou X K, Yang D Z, Ma D G et al. Ultrahigh gain polymer photodetectors with spectral response from UV to near-infrared using ZnO nanoparticles as anode interfacial layer[J]. Advanced Functional Materials, 26, 6619-6626(2016).

    [57] Guo D C, Yang D Z, Zhao J C et al. Role of interfaces in controlling charge accumulation and injection in the photodetection performance of photomultiplication-type organic photodetectors[J]. Journal of Materials Chemistry C, 8, 9024-9031(2020).

    [58] Guo D, Xu Z, Yang D et al. Structure design and performance of photomultiplication-type organic photodetectors based on an aggregation-induced emission material[J]. Nanoscale, 12, 2648-2656(2020).

    Haoyu Wang, Shuanghong Wu, Haolin Zhang, Sheng Wang, Rui Wang, Xiangru Wang. Research Progress of Photomultiplication-Type Organic Photodetectors[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0100003
    Download Citation