• Laser & Optoelectronics Progress
  • Vol. 59, Issue 1, 0100003 (2022)
Haoyu Wang, Shuanghong Wu*, Haolin Zhang, Sheng Wang, Rui Wang, and Xiangru Wang**
Author Affiliations
  • College of Optoelectronics Science and Engineering, University of Electronic Science and Technology of China, Chengdu , Sichuan 610054, China
  • show less
    DOI: 10.3788/LOP202259.0100003 Cite this Article Set citation alerts
    Haoyu Wang, Shuanghong Wu, Haolin Zhang, Sheng Wang, Rui Wang, Xiangru Wang. Research Progress of Photomultiplication-Type Organic Photodetectors[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0100003 Copy Citation Text show less
    Different detectors[23]. (a) Device structure of the PM-type photodetectors; (b) EQE spectrum of the photodetectors with PbS QDs under reverse bias from 0 to -7 V (inset: EQE under logarithmic coordinates); energy diagram of photodetectors under illumination (c) without and (d) with PbS QDs traps
    Fig. 1. Different detectors[23]. (a) Device structure of the PM-type photodetectors; (b) EQE spectrum of the photodetectors with PbS QDs under reverse bias from 0 to -7 V (inset: EQE under logarithmic coordinates); energy diagram of photodetectors under illumination (c) without and (d) with PbS QDs traps
    Photodetector doped with C60 nanoparticles in the photosensitive layer[25]. (a) Diagram of device structure; (b) energy level diagram of OPD
    Fig. 2. Photodetector doped with C60 nanoparticles in the photosensitive layer[25]. (a) Diagram of device structure; (b) energy level diagram of OPD
    Schematic images of interfacial barriers of PM-type OPD under reverse bias in dark and under illumination[26]. (a) Without LiF interfacial layer; (b) with LiF interfacial layer
    Fig. 3. Schematic images of interfacial barriers of PM-type OPD under reverse bias in dark and under illumination[26]. (a) Without LiF interfacial layer; (b) with LiF interfacial layer
    Principle diagram[29]. (a) Traditional OPDs under short-wavelength light illumination; (b) traditional OPDs under 650 nm light illumination; (c) PM-type OPD under short- wavelength light illumination; (d) PM-type OPD under 650 nm light illumination
    Fig. 4. Principle diagram[29]. (a) Traditional OPDs under short-wavelength light illumination; (b) traditional OPDs under 650 nm light illumination; (c) PM-type OPD under short- wavelength light illumination; (d) PM-type OPD under 650 nm light illumination
    CIN narrowband photomultiplier[31]. (a) Schematic structure diagram of the prepared OPD; (b) transmittance spectrum of Al films with different thickness; (c) EQE spectrum of the OPD with different thickness of Al electrode under bottom illumination condition at -20 V bias; (d) EQE spectrum of the corresponding OPD under top illumination condition at -20 V bias
    Fig. 5. CIN narrowband photomultiplier[31]. (a) Schematic structure diagram of the prepared OPD; (b) transmittance spectrum of Al films with different thickness; (c) EQE spectrum of the OPD with different thickness of Al electrode under bottom illumination condition at -20 V bias; (d) EQE spectrum of the corresponding OPD under top illumination condition at -20 V bias
    Capture hole[47]. (a) Energy level diagram of OPD; (b) EQE spectrum of PM-type OPD under different reverse bias
    Fig. 6. Capture hole[47]. (a) Energy level diagram of OPD; (b) EQE spectrum of PM-type OPD under different reverse bias
    Schematic of UV light induced oxygen desorption from the surface of ZnO nanoparticles and the concomitant change in surface energy level structure and free electron density[56]. (a) In the cases of pristine; (b) under UV light illumination and (c) after UV light treatment; (d) working mechanism of the OPD
    Fig. 7. Schematic of UV light induced oxygen desorption from the surface of ZnO nanoparticles and the concomitant change in surface energy level structure and free electron density[56]. (a) In the cases of pristine; (b) under UV light illumination and (c) after UV light treatment; (d) working mechanism of the OPD
    Working mechanism of the OPD[58]. (a) In dark; (b) under illumination
    Fig. 8. Working mechanism of the OPD[58]. (a) In dark; (b) under illumination
    YearDevice structureLocationof trapsλ /nmBias /VEQE /%Responsetime /msReference
    2015ITO/PEDOT∶PSS/P3HT∶PC61BM/AlAcceptor625-19.037500>1000.0026
    2016ITO/SnO2/PEIE/PDTP-DFBT∶PC71BM∶PbS/MoO3/AgDoped bulk traps900-7.01800.3223
    2016ITO/PVK/P3HT∶PCBM∶CdTe/BCP/AlDoped bulk traps660-6.02000.3924
    2016ITO/PEDOT∶PSS/P3HT∶PC-IDT2T/AlAcceptor390-20.028000-28
    7504000
    2016ITO/C60/PbPc∶C60/BCP/AlBlocking layer850-6.01952-55
    2016ITO/ZnO/PDPP3T∶PC71BM/AlInterface layer680-0.5140000270.0056
    2019ITO/PEDOT∶PSS/PBDT-TT-F∶PC61BM∶C60/AlDoped bulk traps460-3.06720.1825
    2019ITO/PEDOT∶PSS/P3HT∶PZ1/AlAcceptor375-20.046700-34
    61531700
    2019ITO/PEDOT∶PSS/PBDB-T∶PZ1/AlAcceptor675-20.01470-35
    2019ITO/ZnO/P3HT∶O-IDTBR/AlAcceptor410-20.07340-36
    2019ITO/PEDOT∶PSS/P3HT/IDIC/AlAcceptor600-19.0130000-37
    2019ITO/ZnO/P3HT∶DRCN5T/AlAcceptor375-20.010600-46
    2020ITO/ZnO/PC71BM∶P3HT/AuDonor640-5.04996-47
    2020ITO/PEDOT∶PSS/PZ1/Y6∶PBDB-T/AlDonor3501.018000-48
    87015000
    2020ITO/PO-T2T/MoO3∶C60/TAPC∶C60/BCP/AlInterface layer350-6.01200003.5057
    2020ITO/TAPC/BT-2TPEPH∶C70/C70/MoO3∶C70/BCP/AlInterface layer350-9.0608401.6958
    Table 1. Major progress of PM-type OPDs
    Haoyu Wang, Shuanghong Wu, Haolin Zhang, Sheng Wang, Rui Wang, Xiangru Wang. Research Progress of Photomultiplication-Type Organic Photodetectors[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0100003
    Download Citation