• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 3, 413 (2021)
Lei-Lei LI1、2, Hai-Xia HUANG3、*, Yang GUO1、2, Nai-Fu YAO1、2, and Yong-Qiang ZHAO1、2
Author Affiliations
  • 1Research &Development Institute of Northwestern Polytechnical University, Shenzhen 518057, China
  • 2School of Automation, Northwestern Polytechnical University, Xi’an 710072, China
  • 3Chinese Academy of Engineering, Beijing 100088, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.03.018 Cite this Article
    Lei-Lei LI, Hai-Xia HUANG, Yang GUO, Nai-Fu YAO, Yong-Qiang ZHAO. 3D reconstruction method of target based on infrared radiation polarization imaging[J]. Journal of Infrared and Millimeter Waves, 2021, 40(3): 413 Copy Citation Text show less
    Vector of infrared spontaneous radiation on a smooth medium surface
    Fig. 1. Vector of infrared spontaneous radiation on a smooth medium surface
    Normal vector diagram of smooth medium surface
    Fig. 2. Normal vector diagram of smooth medium surface
    Simulation map of zenith angle and infrared radiation skewness of different materials
    Fig. 3. Simulation map of zenith angle and infrared radiation skewness of different materials
    3D reconstruction results of aluminum metal cans(a) Original image,(b) Infrared polarization degree image,(c) Infrared polarization angle image,(d) 3D reconstruction result,(e) Partial enlarged image
    Fig. 4. 3D reconstruction results of aluminum metal cans(a) Original image,(b) Infrared polarization degree image,(c) Infrared polarization angle image,(d) 3D reconstruction result,(e) Partial enlarged image
    Kinect method 3D reconstruction results of aluminum metal cans(a) 3D reconstruction result,(b) Partial enlargement of 3D reconstruction result
    Fig. 5. Kinect method 3D reconstruction results of aluminum metal cans(a) 3D reconstruction result,(b) Partial enlargement of 3D reconstruction result
    3D reconstruction results of ceramic vases(a) Original image,(b) Infrared polarization degree image,(c) Infrared polarization angle image,(d) 3D reconstruction result,(e) Partial enlarged image
    Fig. 6. 3D reconstruction results of ceramic vases(a) Original image,(b) Infrared polarization degree image,(c) Infrared polarization angle image,(d) 3D reconstruction result,(e) Partial enlarged image
    Kinect method 3D reconstruction result of ceramic vase(a) 3D reconstruction result,(b) Partial enlargement of 3D reconstruction result
    Fig. 7. Kinect method 3D reconstruction result of ceramic vase(a) 3D reconstruction result,(b) Partial enlargement of 3D reconstruction result
    Glass 3D reconstruction results(a) Original image,(b) Infrared polarization degree image,(c) Infrared polarization angle image,(d) 3D reconstruction result,(e) Partial enlarged image
    Fig. 8. Glass 3D reconstruction results(a) Original image,(b) Infrared polarization degree image,(c) Infrared polarization angle image,(d) 3D reconstruction result,(e) Partial enlarged image
    Kinect method 3D reconstruction of glass(a) 3D reconstruction result,(b) Partial enlargement of 3D reconstruction result
    Fig. 9. Kinect method 3D reconstruction of glass(a) 3D reconstruction result,(b) Partial enlargement of 3D reconstruction result
    Surface temperature robustness verification results
    Fig. 10. Surface temperature robustness verification results
    Refractive index robustness verification results
    Fig. 11. Refractive index robustness verification results
    Lei-Lei LI, Hai-Xia HUANG, Yang GUO, Nai-Fu YAO, Yong-Qiang ZHAO. 3D reconstruction method of target based on infrared radiation polarization imaging[J]. Journal of Infrared and Millimeter Waves, 2021, 40(3): 413
    Download Citation