• Chinese Journal of Lasers
  • Vol. 48, Issue 18, 1802017 (2021)
Hongbo Li1、*, Qiangqiang Gao1, Kangying Li2, and Ban Li2
Author Affiliations
  • 1Key Laboratory of Advanced Forming Technology and Science of Ministry of Education, Yanshan University, Qinhuangdao, Hebei 0 66004, China
  • 2College of Mechanical Engineering, Yanshan University, Qinhuangdao, Hebei 0 66004, China
  • show less
    DOI: 10.3788/CJL202148.1802017 Cite this Article Set citation alerts
    Hongbo Li, Qiangqiang Gao, Kangying Li, Ban Li. Properties of Surface Laser Cladding H13/NiCr-Cr3C2 Composite Powder Cladding Layer[J]. Chinese Journal of Lasers, 2021, 48(18): 1802017 Copy Citation Text show less
    Micromorphology of different powders. (a) H13; (b) NiCr-Cr3C2
    Fig. 1. Micromorphology of different powders. (a) H13; (b) NiCr-Cr3C2
    Macroscopic morphology of cladding layer surface. (a) sample No. 1; (b) sample No. 2; (c) sample No. 3; (d) sample No. 4; (e) sample No. 5; (f) sample No. 6
    Fig. 2. Macroscopic morphology of cladding layer surface. (a) sample No. 1; (b) sample No. 2; (c) sample No. 3; (d) sample No. 4; (e) sample No. 5; (f) sample No. 6
    Metallographic structure of cladding layer.(a) Low power; (b) high power
    Fig. 3. Metallographic structure of cladding layer.(a) Low power; (b) high power
    Scanned images of cross section of cladding layer
    Fig. 4. Scanned images of cross section of cladding layer
    X-ray diffraction pattern of cladding layer surface. (a) Mixed powder; (b) cladding layer
    Fig. 5. X-ray diffraction pattern of cladding layer surface. (a) Mixed powder; (b) cladding layer
    Surface micromorphology of No. 1 sample after thermal fatigue test. (a) Thermal fatigue 5 times; (b) thermal fatigue 25 times; (c) thermal fatigue 35 times
    Fig. 6. Surface micromorphology of No. 1 sample after thermal fatigue test. (a) Thermal fatigue 5 times; (b) thermal fatigue 25 times; (c) thermal fatigue 35 times
    Surface micromorphology of No. 2 sample after thermal fatigue test. (a) Thermal fatigue 5 times; (b) thermal fatigue 25 times; (c) thermal fatigue 35 times
    Fig. 7. Surface micromorphology of No. 2 sample after thermal fatigue test. (a) Thermal fatigue 5 times; (b) thermal fatigue 25 times; (c) thermal fatigue 35 times
    Surface micromorphology of No. 3 sample after thermal fatigue test. (a) Thermal fatigue 5 times; (b) thermal fatigue 25 times; (c) thermal fatigue 35 times
    Fig. 8. Surface micromorphology of No. 3 sample after thermal fatigue test. (a) Thermal fatigue 5 times; (b) thermal fatigue 25 times; (c) thermal fatigue 35 times
    Surface micromorphology of No. 4 sample after thermal fatigue test. (a) Thermal fatigue 5 times; (b) thermal fatigue 25 times; (c) thermal fatigue 35 times
    Fig. 9. Surface micromorphology of No. 4 sample after thermal fatigue test. (a) Thermal fatigue 5 times; (b) thermal fatigue 25 times; (c) thermal fatigue 35 times
    Surface micromorphology of No. 5 sample after thermal fatigue test. (a) Thermal fatigue 5 times; (b) thermal fatigue 25 times; (c) thermal fatigue 35 times
    Fig. 10. Surface micromorphology of No. 5 sample after thermal fatigue test. (a) Thermal fatigue 5 times; (b) thermal fatigue 25 times; (c) thermal fatigue 35 times
    Surface micromorphology of No. 6 sample after thermal fatigue test. (a) Thermal fatigue 5 times; (b) thermal fatigue 25 times; (c) thermal fatigue 35 times
    Fig. 11. Surface micromorphology of No. 6 sample after thermal fatigue test. (a) Thermal fatigue 5 times; (b) thermal fatigue 25 times; (c) thermal fatigue 35 times
    Microhardness of cladding sample. (a) Surface of sample cladding layer; (b) cross section of cladding layer
    Fig. 12. Microhardness of cladding sample. (a) Surface of sample cladding layer; (b) cross section of cladding layer
    Comparison of wear depth between matrix and cladding layer
    Fig. 13. Comparison of wear depth between matrix and cladding layer
    MaterialDensity /(g·cm-3)Melting point /℃Thermal expansion coefficient /(10-6 K-1)
    Cr3C26.68189010.3
    TiC4.9331477.4
    WC15.7027765.2--7.3
    H137.80142712.4
    Table 1. Physical properties of common ceramic phases and H13
    CSiMnCrMoVOFe
    0.361.000.364.911.470.600.361.00
    Table 2. Chemical composition of H13 powder unit: %
    NiCrCr3C2Impurity
    2575≤0.1
    Table 3. Chemical composition of NiCr-Cr3C2 powder unit: %
    NumberPowder ratioLaser power /kWScanning speed /(mm·s-1)Defocusingamount /mmOverlap /mm
    195%H13+5%NiCr-Cr3C2180010301.5
    290%H13+10%NiCr-Cr3C2
    385%H13+15%NiCr-Cr3C2
    480%H13+20%NiCr-Cr3C2
    575%H13+25%NiCr-Cr3C2
    670%H13+30%NiCr-Cr3C2
    Table 4. Powder ratio scheme and cladding process parameters
    Test numberLoad /NTemperature /℃
    1620490
    2620360
    3340490
    4340360
    5640425
    6320425
    7480500
    8480350
    9480425
    10480425
    11480425
    Table 5. High temperature friction and wear test scheme for matrix and cladding layer
    Hongbo Li, Qiangqiang Gao, Kangying Li, Ban Li. Properties of Surface Laser Cladding H13/NiCr-Cr3C2 Composite Powder Cladding Layer[J]. Chinese Journal of Lasers, 2021, 48(18): 1802017
    Download Citation